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ABSTRACT

Current volumetric biomedical foundation models struggle to generalize as public
3D datasets are small and do not cover the broad diversity of medical procedures,
conditions, anatomical regions, and imaging protocols. We address this by creating
a representation learning method that instead anticipates strong domain shifts at
training time itself. We first propose a data engine that synthesizes highly variable
training samples that enable generalization to new biomedical contexts. To then
train a single 3D network for any voxel-level task, we develop a contrastive learning
method that pretrains the network to be stable against nuisance imaging variation
simulated by the data engine, a key inductive bias for generalization. This network’s
features can be used as robust representations of input images for downstream tasks
and its weights provide a strong, dataset-agnostic initialization for finetuning on new
datasets. As a result, we set new standards across both multimodality registration
and few-shot segmentation, a first for any 3D biomedical vision model, all without
(pre-)training on any existing dataset of real images. Our code is attached.

1 INTRODUCTION

Biomedical vision models trained on imaging studies with fixed protocols rarely generalize to
new populations, medical procedures, and imaging devices. These domain shifts then necessitate
clinically infeasible reannotation and retraining cycles, especially for adaptation to new tasks. Further,
volumetric annotated biomedical datasets are especially limited in sample size and focused on specific
medical procedures, diseases, or scales of anatomy, leading current networks to overfit to a small sub-
set of biomedical tasks. To overcome this data scarcity and heterogeneity, we present a representation
learning framework driven by a synthetic data engine. Our approach yields a generalist 3D network
that performs well on diverse voxel-level tasks across a range of unseen biomedical contexts.

Current biomedical foundation models are trained by aggregating publicly available datasets to cover
multiple domains (Butoi et al., 2023; Chen et al., 2024a; Liu et al., 2023a; Ma & Wang, 2023;
MH Nguyen et al., 2024; Pachitariu & Stringer, 2022; Xie et al., 2022). However, persistent gaps
hinder their widespread adoption. For example, some methods operate only on specific modalities and
regions that can be tractably scaled up in sample size, such as chest X-ray (Chen et al., 2024b), and
thus cannot learn general representations for most other domains, such as in utero fetal MRI. Others
treat 2D slices of volumetric images as independent data points (Butoi et al., 2023; Ma & Wang, 2023),
often constructing training sets with high inter-sample correlation yielding models that fail to produce
consistent 3D results. Further, existing foundation models almost exclusively focus on segmentation
and classification and neglect other key vision tasks such as registration. To our knowledge, no
biomedical vision foundation model has been demonstrated for multiple disparate 3D tasks yet.

Contributions. This paper makes advances on two fronts. To gain robustness to large domain
shifts in downstream deployment, we first propose a biomedically informed data engine whose
samples encompass a wide range of appearances and semantics. This engine uses randomly sampled
spatial configurations of biomedical shape templates to synthesize images with arbitrary resolutions,
appearances, imaging physics, and crucially, minimal influence from any existing biomedical dataset.
Unlike training on samples from GANs or diffusion models, which are limited to reproducing only
their original training distribution, our engine synthesizes highly diverse samples useful for arbitrarily
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Figure 1: Representations produced by our framework, trained only on synthetic data, are
approximately stable across imaging modalities, field-of-views, and poses on real unseen volumes
from various datasets. For each anatomical region (rows), we show two example volumes with
substantial variation (col. 1) and six arbitrarily selected network output channels (cols. 2–7) that
illustrate this stability. These features and network weights can be used for several voxel-level tasks.

new biomedical contexts that we do not have training data for. We then develop a contrastive learning
framework that uses paired samples from the data engine to pretrain a network for general voxel-level
tasks using an inductive bias of approximate stability to nuisance imaging variation that does not
change image semantics, a key property for generalization across datasets (Gruver et al., 2022).

We experimentally demonstrate that the resulting features and weights enable broad generalization
on the key biomedical tasks of 3D registration and segmentation across several diverse datasets. We
achieve state-of-the-art unsupervised multimodality image registration by simply using the network’s
approximately appearance invariant and pose equivariant representations (Fig. 1) to drive existing
registration solvers. The proposed network can also be used as an off-the-shelf dataset-agnostic
initialization for finetuning on any voxel-level task. Specifically, we demonstrate strong few-shot
segmentation performance in a few-shot setting across highly diverse downstream datasets, thereby
removing the need for cumbersome dataset-specific self-supervised pretraining.

2 RELATED WORK

Generative image models. Learning-based generative models (Brock et al., 2018; Goodfellow et al.,
2014; Karras et al., 2020; Luo, 2022; Rombach et al., 2022; Song et al., 2020) trained on internet-scale
natural vision sets (Schuhmann et al., 2022) can now synthesize photorealistic samples for pretraining
general networks (Donahue & Simonyan, 2019; Fan et al., 2023; Li et al., 2023; Tian et al., 2024b).
However, such generative models trained instead on the few thousand publicly available anatomy-
and modality-specific annotated volumes in biomedical datasets (Baid et al., 2021; LaMontagne
et al., 2019; Qu et al., 2024; Wasserthal et al., 2023) generally do not learn representations that can
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Figure 2: Data engine. A. We randomly sample binary labels as templates from a large database of
segmentations to create 3D shape ensembles of randomly deformed templates. B. Given a synthesized
shape ensemble and an appearance model, we synthesize two volumes to pretrain a network with a
dense contrastive objective. C. Example synthetic training volumes.

generalize to new biomedical domains. In contrast, the label synthesis component of our data engine
draws loose inspiration from the Dead Leaves model (Baradad Jurjo et al., 2021; Lee et al., 2001).
This hand-crafted generative model considers images to be compositions of randomly deformed
shape templates (such as cubes, ellipsoids, etc.) with static intensities to capture the statistics of
natural images. We compose biomedical shape templates similarly but develop several further
extensions and propose a distinct appearance model, as explained below.

Domain randomization. To learn robustness to domain shifts at deployment, domain randomized
generative models (Tobin et al., 2017) trade realism for diversity when generating training data for
downstream models. For example, domain randomized methods for brain segmentation (Billot et al.,
2023a;b; Gopinath et al., 2023; Hoopes et al., 2022b) and registration (Hoffmann et al., 2021; Iglesias,
2023) train on synthetic brains simulated from label maps and require large collections of expert brain
annotations. Recent work in dataset-agnostic instance segmentation (Chollet et al., 2024; Dey et al.,
2024) generalizes beyond brains by simulating both annotations and images using a pre-specified
shape prior. We build on these concepts to train a task-agnostic network to simulate images with
highly variable appearances and physics from compositions of biomedical shape templates.

Invariant imaging features. Given the heterogeneous nature of biomedical imaging protocols,
several existing strategies aim to extract features robust to nuisance variation. When registering
images across modalities, aligning modality-invariant hand-crafted local descriptors (Heinrich et al.,
2012; 2013) and/or edges (Haber & Modersitzki, 2006) is common. With deep learning-based
multimodality registration, this inter-modality invariance can be learned (Dey et al., 2022; Mok
et al., 2024; Pielawski et al., 2020), leading to improved performance at the cost of dataset-specific
training. Beyond registration, brain-specific invariant features have been learned by exploiting large
repositories of annotated brains (Chua & Dalca, 2023; Liu et al., 2023b; 2024). Our work obviates
the need for dataset-specific training, anatomical region-specific modeling, and large-scale annotation
collection by extracting modality- and appearance-invariant features in an amortized manner.
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Figure 3: Representation learning. Given a 3D label map and two synthetic volumes generated from
it, we process them with a single UNet (with shared weights). The UNet is pretrained contrastively
at each layer of the decoder. For a randomly sampled anchor, features sampled from corresponding
labels in both volumes are treated as positives and features from other labels are considered negatives.

Volumetric pretraining. Many methods pretrain on unannotated images from a dataset prior to
supervised finetuning on a small labeled subset. These methods often employ self-supervised
reconstructive (Chen et al., 2019a; Tang et al., 2022; Valanarasu et al., 2024; Zhou et al., 2023; 2021)
and/or discriminative (Chaitanya et al., 2020; 2023; Ren et al., 2022; You et al., 2024) losses. However,
these pretraining strategies exploit heuristics about their target datasets that often do not broadly
generalize (Dong et al., 2021; Ren et al., 2022). Our approach instead yields a network that generalizes
to arbitrary datasets and does not require bespoke pretraining frameworks for each project. Lastly,
recent biomedical foundation models trained on pooled datasets of 2D slices (Butoi et al., 2023; Ma &
Wang, 2023; MH Nguyen et al., 2024; Wong et al., 2023) generally require interaction (via bounding
boxes, scribbles, etc.), struggle with 3D consistency, and are restricted to segmentation. We instead
directly train for general tasks using synthetic 3D volumes and do not work on interactive tasks.

3 METHODS

This section first details the proposed data engine (Fig. 2), then describes the representation learning
strategy (Fig. 3), and concludes with applications towards 3D registration and segmentation.

Data engine: label ensemble model (Fig. 2A). We create synthetic 3D label ensemble volumes by
sampling from a repository of biomedical shape templates. As templates, we use the freely available
∼45,000 binary volumes from the TotalSegmentator dataset of 104 annotated organs in 1,204 CT
volumes (Wasserthal et al., 2023). For each label ensemble volume, we iteratively populate a 3D
volume with a random number of randomly sampled templates that are each then deformed and
assigned the label corresponding to the sampling iteration. To simulate anatomy being surrounded
by empty space (as is common in radiology), we apply a foreground mask to two-thirds of the
synthesized label ensembles by multiplying them with a randomly deformed binary sphere with a
random radius and center. Finally, we randomly encase half of the foreground-masked volumes
within envelope labels of random widths, to emulate layer-like structures common to some biomedical
applications (e.g., fat).

Data engine: appearance model (Fig. 2B). Given a 3D label ensemble L with K labels, we
sample the intensities of two volumes V1 and V2 from two independent K-component Gaussian
mixture models (GMMs) each with parameters {µk1, σ

2
k1}Kk=1 and {µi2, σ

2
i2}Kk=1, respectively, all

of which are randomly drawn from uniform distributions. For each spatial index in L with label k,
we sample the initial intensities in V1 and V2 from N (µk1, σ

2
k1) and N (µk2, σ

2
k2), respectively. We

then pointwise multiply them with Perlin noise (Perlin, 1985) to simulate spatial texture and augment
using transformations relevant to biomedical volumes such as random bias fields, Fourier-spikes,
Gamma shifts, blurring, Gibbs ringing, resolution degradations, noise, motion, flips, and affine warps.
All intensity augmentations are sampled independently but the geometric augmentations are shared.
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Figure 4: Multi-modality 3D registration. The ConvexAdam registration solver (Siebert et al., 2021)
driven by our network features (“Ours”) accurately aligns challenging intra-subject abdominal MRI-
CT (top) and inter-subject cardiac MRI-CT (bottom) 3D multi-modality pairs with large deformations.

In summary, we synthesize a 3D label ensemble L and draw volumes V1 and V2 from it that differ
in appearance but share 3D semantic layouts. This is repeated with randomized hyperparameters
for each sample to generate a synthetic dataset. Low-level modeling details are provided in App. B.1.

Contrastive pretraining (Fig. 3). As our data engine provides exact label supervision, we develop
a representation learning loss that is a spatial extension of multi-positive supervised contrastive
learning (Khosla et al., 2020). To pretrain network F : RH×W×D → RH×W×D×C where H,W,
and D are spatial dimensions and C is the number of output features, we use an inductive bias of
voxels within a 3D shape having similar spatial representations, regardless of appearance. We assume
that an anchor spatial index i ∈ I (where I = {1, . . . , 2HWD}, i.e., voxels pooled from V1 and
V2) with features fi ∈ RC in label k should have similar representations to all other indices in label
k in both F (V1) and F (V2) and dissimilar representations to indices from other labels. As in (Chen
et al., 2020a), we use a non-linear projection Z : RH×W×D×C → RH×W×D×CZ on F ’s outputs
followed by an L2-normalization when computing the contrastive loss,

L =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp(zi · zp/τ)∑

q∈Q(i) exp(zi · zq/τ)
, (1)

where z ∈ RCZ , τ is a hyperparameter, Q(i) = I\{i} (i.e., all non-anchor spatial indices), and P (i)
is the set of all positives for anchor i, s.t. P (i) = {p ∈ Q(i) : kp = ki}, where kx is the label of
spatial index x. Lastly, we use this loss on multiple decoder layers of F during training to leverage
multiscale (self-)supervision as in Dey et al. (2022); Park et al. (2020); Ren et al. (2022).

Pretraining implementation details. We implement F as a four-level 3D convolutional UNet (Ron-
neberger et al., 2015) following the architecture from (Ren et al., 2022) and construct Z as a 3-layer
128-node-wide MLP. While F can be any volume-to-volume network, we use a U-Net as it is the
standard architecture for biomedical imaging tasks and performs well across datasets (Isensee et al.,
2024; Stringer & Pachitariu, 2024). F and Z are pretrained jointly for 600,000 iterations with a
batch size of one 1283 label map, each generating two 1283 volumes. We compute the contrastive
loss (with temperature τ = 0.33) on 512 randomly sampled indices at each iteration for each decoder
layer due to memory limitations. Lastly, Z is only used during pretraining and is discarded for all
downstream tasks. All other pretraining details are described in App. B.3.
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Figure 5: Multi-modality 3D registration results. (a) Dice boxplots for each method for L2RAb
(left group) and MM-WHS (right group), with corresponding medians reported on top of each box
and the mean percentages of voxels with folds produced by each method reported at the bottom; (b)
Using our features leads to consistent registration improvements at the subject-level.

Downstream tasks: multi-modality registration. Gradient-based deformable registration objectives
typically take the form of Lreg = d(Vfixed, Vmoving ◦ φ) + λReg(φ), where image Vmoving is to be
aligned to Vfixed by deformation φ (subject to regularization Reg(·)) and d(·) is an image dissimilarity
score. To align images across imaging modalities, we simply replace the input volumes with our
pretrained network’s features as inLreg = d(F (Vfixed), F (Vmoving)◦φ)+λReg(φ). This approach is
compatible with any existing high-performance registration solver, such as the ConvexAdam (Siebert
et al., 2021) and ANTs (Tustison et al., 2020) frameworks used in our experiments below.

Downstream tasks: few-shot segmentation. For N -label segmentation, we use a small set of
annotated volumes to finetune the pretrained network F , with an additional convolutional layer with
softmax activation with N output channels. We optimize the network using an equally weighted
sum of the soft Dice and cross-entropy losses (Isensee et al., 2021; Taghanaki et al., 2019). To extract
strong performance for all baselines in the challenging setting of finetuning on only one or few
annotated volumes, we use extensively-tuned augmentation pipelines and finetune all layers of each
network for a high number of iterations (37,500) with cosine learning rate decay.

4 EXPERIMENTS

The pretrained network’s output features for inter and intra-subject volume pairs with semantically
similar content are visualized in Fig. 1. Below, we present experiments that investigate the utility
of our learned representations for multi-modality registration, the network weights as a pretrained
initialization for few-shot segmentation, and analyze and ablate our framework’s modeling decisions.

4.1 UNSUPERVISED MULTI-MODALITY DEFORMABLE 3D REGISTRATION

Data and setup. We use the Learn2Reg AbdomenMRCT (Hering et al., 2021) (L2RAb) and
MM-WHS (Gao et al., 2023; Zhuang, 2018; Zhuang et al., 2019) datasets to benchmark MRI
to CT volume registration. L2RAb is an abdominal registration benchmarking dataset, whose
publicly available portion provides eight affine-aligned intra-subject MRI and CT pairs of size
192 × 160 × 192 at 2 × 2 × 2mm3 resolution, with labels for four organs. MM-WHS, originally
a heart segmentation dataset, contains 20 annotated MRIs and CTs (from distinct subjects) and we
affine-align all volumes to a common space of size 160× 160× 128 at 1.142× 1.142× 1.283mm3

resolution (see App. B.4.4 for further details). The registration experiments are unsupervised and
we therefore split L2RAb and MM-WHS into 1/7 and 5/15 validation/testing pairs, respectively,
where the validation pair(s) are only used for tuning registration hyperparameters.
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Figure 6: Few-shot 3D segmentation qualitative results. All methods (columns 2–7) were fine-
tuned on 3, 3, and 1 multi-label annotated volume(s) for each respective dataset (rows 1–3).

Baselines and evaluation. We compare unsupervised and training-free multimodality registration
frameworks. Our iterative baselines include the widely-used ANTs library (Avants et al., 2008; Tusti-
son et al., 2020) with mutual information loss (Mattes et al., 2001; Wells III et al., 1996) (ANTs-MI)
and the state-of-the-art (Hering et al., 2021) multimodality method, ConvexAdam (Siebert et al.,
2021). We further use two dataset-agnostic registration networks, SynthMorph-shapes (Hoff-
mann et al., 2021) and uniGradICON (Tian et al., 2024a), with the latter also using optional
instance optimization (uniGradICON+IO). For evaluation, we report post-registration volume
overlap (Dice) of anatomical structures. We also assess deformation inverse consistency using the
percentage of folding voxels, where det(Jφ) < 0, for Jacobian Jφ of the estimated φ. Folding
percentages below 0.5% of all voxels are generally considered negligible and methods producing
higher Dice values while staying under this threshold are preferred (Dey et al., 2022; Qiu et al., 2021).

Adaptation to use network features. We modify ANTs and ConvexAdam to use our pretrained
network’s 16 extracted features. We use ANTs’ multichannel mode with the MSE loss and tune its
hyperparameters heuristically on validation pairs. For ConvexAdam, we concatenate our features
with its default handcrafted features and perform a grid search for both the original implementation
and our variant over four hyperparameters. Lastly, the deep learning baselines assume single-channel
input volumes and thus cannot directly use our multichannel network features.

Results. Figs. 4 and 5 present results on held-out testing pairs. ANTS-Ours strongly improves upon
the typically-used ANTS-MI, with 26 and 5 points of median Dice improvement on L2RAb and MM-
WHS, respectively, while maintaining nearly identical low folding characteristics. Further, driven by
our network features, ConvexAdam-Ours outperforms all methods in terms of volume overlap and
improves on its base ConvexAdam method by 11 and 6 Dice points, with the same folding ratios.

In contrast, the SynthMorph-shapes and uniGradICON+IO methods perform well on MM-
WHS (where all hearts are roughly centered) but cannot handle the larger deformations in L2RAb.
They do, however, yield nearly diffeomorphic transformations, producing almost zero folds. Lastly,
without iterative optimization, uniGradICON demonstrates limited generalization across large
intensity-based domain gaps. We note that all methods produce folding percentages that are under the
threshold of 0.5% folding voxels. Additional grid search results on the validation sets are in App. A.2.

4.2 FEW-SHOT 3D MULTI-LABEL SEMANTIC SEGMENTATION

Data and setup. We evaluate few-shot segmentation performance on a diverse collection of datasets:
cardiac MRI from MSD-Heart (Antonelli et al., 2022), abdominal CT from AMOS (Ji et al., 2022),
prostate MRI from PROMISE12 (Litjens et al., 2014), abdominal MRI (Akin et al., 2016; Clark et al.,
2013; Kavur et al., 2019; Linehan et al., 2016) from Learn2Reg-Abdomen (Hering et al., 2021), fetal
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Table 1: Few-shot 3D segmentation Dice means and their bootstrapped std. deviations. Bolding and
underlining represent best and second-best Dice, respectively.

Params. MSD-Heart PROMISE12 L2RAb-MRI FeTA AMOS-CT WUFetal

Fine-tuning vols. 1 2 3 3 3 3
Number of classes 1 1 4 7 15 4

Rand. Init. UNet 5.9M .85(.01) .80(.02) .85(.06) .78(.03) .56(.01) .73(.02)
Transfer Learning 5.9M .87(.02) .82(.01) .82(.06) .78(.03) .52(.01) .74(.02)
Models Genesis 19.1M .84(.04) .73(.03) .81(.06) .79(.03) .55(.01) .66(.03)
MedicalNet 17.3M .86(.02) .53(.04) .73(.07) .74(.04) .44(.02) .50(.02)
PrimGeoSeg 67.2M .87(.01) .79(.02) .84(.05) .79(.03) .63(.01) .76(.02)
SMIT 67.2M .88(.02) .72(.03) .84(.06) .76(.04) .58(.01) .73(.02)
Disruptive AE 67.2M .82(.02) .64(.03) .77(.07) .74(.04) .50(.02) .70(.02)

Ours 5.9M .89(.01) .85(.01) .86(.06) .80(.03) .61(.01) .76(.02)

Full supervision 5.9M .91(.01) .90(.00) .89(.05) .83(.01) .85(.00) .88(.01)

Table 2: Multitask capabilities of current 3D biomedical foundation models. Using foundation
models as feature extractors for multimodality registration with the ANTs solver, only Ours outper-
forms the solver defaults (MutualInfo), indicating that other methods are limited to segmentation.

Dataset MutualInfo PrimGeoSeg ModelsGen. SMIT DAE Ours

L2RAbdomenMRCT .48(.10) .46(.09) .38(.07) .48(.08) .50(.07) .70(.09)
MM-WHS .58(.03) .51(.02) .51(.03) .53(.03) .53(.03) .63(.02)

brain MRI from FeTA (Payette et al., 2024), and an in-house dataset of whole uterus fetal BOLD MRI
(WUFetal). WUFetal provides labels for the placenta, amniotic fluid, and the fetal brain and body. It is
included as an out-of-distribution test dataset for the baselines below that are trained on multi-dataset
collections of commonly imaged regions. Lastly, we operate in the few-shot regime, where only 1–3
annotated volumes per dataset are used for finetuning. The dataset splits are in App. B.5.

Baselines. We use 3D foundation models specifically pretrained for multi-label segmentation on mul-
tiple datasets. These include the masked autoencoding-based Models Genesis (Zhou et al., 2021),
SMIT (Jiang et al., 2022), and Disruptive AE (Valanarasu et al., 2024). Other transfer-learning
baselines include MedicalNet (Chen et al., 2019b) and PrimGeoSeg, the latter being pretrained
to segment synthetic binary volumes with simplistic shapes. To explicitly test transfer learning with
a matched architecture (TransferLearning), we further train a fully supervised UNet with the
same architecture as Ours on a large-scale neuroimage segmentation dataset (Hoopes et al., 2022a;
LaMontagne et al., 2019), We also test a randomly initialized UNet (with matched architecture to
Ours) trained on few (RandInitUNet) or all (FullSupervision) volumes in the training split.
Current 2D interactive binary segmentation foundation models (Butoi et al., 2023; Ma & Wang, 2023)
were excluded from the experiments as they require user prompts and do not apply to 3D multi-label
data. All methods were finetuned with extensive data augmentation, as described in App. B.5.

Results. Table 1 and Fig. 6 present few-shot segmentation results. Our learning framework produces
pretrained weights that consistently improve upon random initialization. Crucially, this improvement
is achieved using only our dataset-agnostic pretrained weights and without any pretraining on unla-
beled real volumes or data from similar domains, as used in previous work. Compared to larger foun-
dation models specifically trained for segmentation, our pretrained general-purpose network achieves
the first or second rank consistently and has the best average rank. Importantly, the second-best model
changes dataset-to-dataset, indicating that the baseline methods do not generalize consistently to new
biomedical contexts. We lastly emphasize that we achieve these gains with fewer parameters, without
access to any real images, and while being applicable to other tasks as well, as described below.

4.3 ABLATIONS AND OTHER ANALYSES

Multitask capabilities. Current 3D biomedical vision foundation models are evaluated primarily
using segmentation, raising the question of how well their features generalize to other tasks. To
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Figure 7: Features for varying pretraining configurations. When our framework is trained with
different τ values (cols. 2–3) or on synthetic data generated from other label sources (cols. 5–6), the
network features for real biomedical volumes (col. 1) are degenerate and/or sensitive to nuisance
imaging variation. We visualize an arbitrary channel for each model, with more in App. Fig. 11.

test this, we employ the few-shot segmentation baselines (that provide both pretrained encoders and
decoders) as general-purpose feature extractors and use their features to drive a generic registration
solver (ANTs), with implementation details provided in App. B.4.3. As reported in Table 2, all current
3D biomedical foundation models are unable to extract features that improve upon the baseline setting
used by the solver (MutualInfo). In contrast, our network (Ours) outperforms it by wide margins
and is the only method to yield multitask general-purpose features for the highly disparate tasks of
multi-modality registration (Fig. 5) and few-shot segmentation (Table 1).

Label generation. To evaluate our label ensemble model, we replace it with other training labels while
keeping the appearance model fixed. We test pretraining using: (a) synthetically generated labels that
have no biomedical priors (Butoi et al., 2023; Hoffmann et al., 2021) (smshapes), (b) 1,573 label
maps of real brain MRI using the FreeSurfer protocol (Fischl, 2012) (Brains) that represent real
anatomical structures with dense per-voxel annotations, and (c) a combination of Brains and our
model to mix real and synthetic sources of label maps. Details regarding these models are provided

Table 3: Effect of pretraining configurations on downstream tasks via Dice means and their
bootstrapped std. deviations. Row 1 corresponds to the configuration used in our previous experiments.
Registration experiments are all performed using the ConvexAdam (Siebert et al., 2021) solver.

Pretraining config. Registration (L2RAb) Few-shot segmentation Dice (↑)
Pretraining loss τ Labels Dice(↑) Folds%(↓) WUFetal MSD-Heart AMOS-CT

Ours 0.33 Ours .74(.10) 0.22% .76(.02) .89(.01) .61(.01)

Ablating pretraining labels

Ours 0.33 smshapes .68(.10) 0.20% .73(.02) .88(.01) .60(.01)
Ours 0.33 Brains .57(.10) 0.16% .74(.02) .88(.02) .60(.01)
Ours 0.33 Ours+Brains .71(.08) 0.29% .76(.02) .89(.01) .61(.01)

Temperature variation

Ours 0.07 Ours .58(.10) 0.17% .72(.02) .90(.01) .60(.01)
Ours 0.20 Ours .64(.09) 0.19% .78(.02) .91(.01) .62(.01)

Ablating pretraining loss

Denoising - Ours .51(.10) 0.19% .58(.02) .83(.03) .46(.01)
Remove labels - Ours .50(.11) 0.24% .66(.02) .86(.02) .58(.01)

Ablating pretraining augmentations

Ours (Row 1) w/o FG mask .63(.09) 0.27% .73(.02) .86(.03) .60(.01)
Ours w/o FG mask, w/o offline augm. .63(.09) 0.22% .74(.02) .89(.01) .56(.01)
Ours w/o FG mask, w/o all augm. .59(.09) 0.63% .70(.02) .84(.02) .51(.01)
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in App. B.6. Table 3 rows 1–4 show that both registration and segmentation performance decline
with other choices of pretraining labels. Further, combining our labels with Brains does not affect
segmentation but worsens abdominal registration. Lastly, pretraining on these alternative label models
leads to unstable network features on real data (Fig. 7), likely explaining the performance degradation.

Temperature (τ ). The temperature hyperparameter τ in the contrastive loss (eq. 1) controls the
penalty weight on negative pairs (Wang & Liu, 2021). In natural vision, smaller τ values (such as
τ = 0.07 (Chen et al., 2020b)) are used to upweigh difficult negative pairs. However, as we train
our network to learn similar representations within each label despite highly disparate appearances,
the negative pairs are all difficult and require a relaxed τ of 0.33 for stable training. We find that
using lower τ leads to degenerate aliased features (Fig. 7) and worse registration results (Table 3).
Interestingly, segmentation benefits slightly from an intermediate setting of τ = 0.20, indicating
a tradeoff between optimal representations for downstream registration versus segmentation.

Pretraining objectives. We now retain our data engine, but pretrain using other frameworks. We
compare against matched architectures that are (a) pretrained to denoise the augmentations used
in our data engine (Denoising) as in Iglesias et al. (2023) and (b) pretrained using self-supervision
on intensities alone without using label information (RemoveLabels) as in Chua & Dalca (2023);
Ren et al. (2022). In Table 3, rows 1, 7, and 8, we find that our label-supervised multi-positive
contrastive strategy yields the highest results for both registration and segmentation.

Figure 8: Fine-tuning perfor-
mance as a function of annota-
tion budget.

Data engine augmentations. We now ablate the augmentations
used in the proposed data engine used during pretraining by cumu-
latively removing the foreground masking, the augmentations used
during offline image synthesis (App. Fig. 12), and all augmentations,
such that the training images are simply the Perlin-corrupted Gaus-
sian mixture model outputs. In Table 3 rows 9–11, we observe a
substantial drop in both registration and segmentation performance
without the proposed augmentations.

Finetuning with more annotations. Finally, while our segmen-
tation experiments focus on the few-shot setting, our learned ini-
tialization also benefits scenarios with more supervision. Fig. 8
quantifies how finetuning the proposed network with more annotated
volumes leads to improved segmentation on AMOS-CT (Ji et al.,
2022) relative to random initialization across settings, albeit with
smaller improvements given more annotations.

5 DISCUSSION

Limitations and future work. Our approach does have limitations. We pretrained our network to be
stable against intensity variations (among other variables) and demonstrated its utility for registration
and segmentation. However, a small set of biomedical tasks rely on relative intensity values (Naka-
mura et al., 2017; Thomalla et al., 2011), making intensity invariance a suboptimal inductive bias
for them. Further, while we operate on general volumetric tasks, certain biomedical inverse problems
like MRI reconstruction take sensor-domain non-Cartesian (Schlemper et al., 2019) measurements as
multichannel (Singh et al., 2022) inputs, requiring domain-specific architectural changes. Lastly, our
segmentation experiments finetune our pretrained network on specific datasets, potentially introducing
complexity for some clinical users. However, future extensions could directly use our proposed data
engine to train promptable 3D segmentation models that require no such finetuning.

Conclusions. When combined with the right inductive biases, synthetic data models informed by
biomedical templates enable the training of powerful general-purpose networks. This is important
for 3D radiology, where existing annotated datasets are limited in sample size, often acquiring only
dozens to at most a few thousand volumes. This leads to inflexible models that deteriorate under
domain shifts. Trained only on synthetic volumes with our proposed framework, the resulting network
provides substantial benefits on a variety of tasks. For example, its representations yield substantial
improvements over the state-of-the-art in training-free multimodality deformable registration, a key
area in biomedical vision. Further, the network can also serve as a downstream dataset-agnostic
initialization for few-shot segmentation tasks and lead to improvements across multiple datasets.
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Xiahai Zhuang, Lei Li, Christian Payer, Darko Štern, Martin Urschler, Mattias P Heinrich, Julien
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A APPENDIX: ADDITIONAL RESULTS

A.1 ADDITIONAL SYNTHETIC DATA VISUALIZATIONS

Figure 9: Randomly selected synthetic volume (center slice) visualizations sampled from our
proposed data engine (top). In the Brains and smshapes rows, we present samples corresponding
to our ablations where we replace our proposed 3D label ensemble generator with real 3D brain labels
(middle) or synthetically generated labels with no biomedical priors (bottom), respectively, but keep
the appearance model unchanged.
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A.2 REGISTRATION REGULARIZATION WEIGHT GRID SEARCHES

Deformable registration optimization faces a trade-off between accuracy and warp field regularity,
which is often tackled by using various regularizers and hyperparameters (Hoopes et al., 2021).
For a fair comparison with ConvexAdam, we separately tune both the original framework and
our extension (ConvexAdam-Ours) via a grid search over four hyperparameters on the validation
splits of both datasets (i.e., L2R-Abdomen MRCT and MM-WHS). These hyperparameters
include: Adam (Kingma & Ba, 2014) optimization grid spacing: {1, 2}, the warp smoothness
penalty λ: {0.25, 0.5, 0.75, . . . , 2.5}, grid spacing: {2, 3, . . . , 6} and disp hw: {1, 2, . . . , 5}. All
hyperparameters are tuned such that post-registration volume overlap (Dice) is maximized while
maintaining deformation folds below 0.5%.

In Table 4, we summarize the Dice and folding statistics over the validation set grid searches. The
reported means are averaged across subjects and hyperparameter configurations while standard devi-
ations indicate inter-configuration spread. Using our network features (ConvexAdam-Ours) leads to
substantially better performance and lower sensitivity to hyperparameter settings. This is corroborated
in Fig. 10, where for different settings of λ along the x-axis, we visualize Dice and folding voxel
percentages for each individual hyperparameter configuration. We again find better performance at
lower folding percentages while maintaining a lower sensitivity to hyperparameter settings.

Table 4: Registration validation set grid search summary statistics (mean± std.). Here, the means
are computed over all subjects and all hyperparameter configurations and the standard deviations
correspond to the spread over all hyperparameter configurations.

L2R-Abdomen MRCT MM-WHS
Method Dice (↑) Folds% (↓) Dice (↑) Folds% (↓)
ConvexAdam-Ours 0.863± 0.016 0.693± 1.423 0.661± 0.030 0.496± 1.249
ConvexAdam 0.806± 0.038 2.269± 3.292 0.652± 0.023 1.715± 3.572

Figure 10: Registration validation set grid search sweep statistics. Here, each point contained in a
boxplot is the average Dice for a particular hyperparameter configuration, given a fixed λ.
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A.3 ADDITIONAL REPRESENTATION VISUALIZATIONS

Figure 11: Companion figure to Fig. 7: Feature visualizations for varying pretraining configura-
tions. Here, we visualize channel-wise output representations from our pretrained network for the
two volumes at the top left for the first six channels. First, varying the temperature hyperparameter
in the contrastive loss can lead to substantial aliasing (grouped rows 1–3). Then, changing our label
ensemble synthesis model for other label sources (grouped rows 3–5) shows a loss in stability to
nuisance variation. Our proposed model in grouped row 3 achieves both interpretable and stable
representations on highly challenging volume pairs.
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Table 5: Experiments comparing the multitask capabilities of the second-best segmentation model in
Table 1 (PrimGeoSeg) when matched for parameters and network architecture, as measured by
subject-averaged Dice coefficients and their corresponding bootstrapped std. deviations.

Few-shot Segmentation Registration w/ ANTs
Method Architecture Params. MSD-Heart L2RAb-MRI FeTA AMOS-CT WUFetal L2RAb MMWHS

PrimGeoSeg SwinUNETR 67.2M .87(.01) .84(.05) .79(.03) .63(.01) .76(.02) .46(.09) .51(.02)

PrimGeoSeg UNet 5.9M .82(.02) .84(.06) .79(.03) .56(.01) .71(.02) .36(.06) .48(.02)
Ours UNet 5.9M .89(.01) .86(.05) .80(.03) .61(.01) .76(.02) .70(.09) .63(.02)

A.4 NETWORK PARAMETER COUNT EFFECTS

Our experiments in Section 4.2 compare our pretrained U-Net with publicly released foundation
models that have significantly higher parameter counts. To investigate the impact of network size, we
use the same U-Net architecture as in our proposed model and retrain the second-highest average
ranking method, PrimGeoSeg (Tadokoro et al., 2023), reducing its parameter count from 67.2M to
5.9M but matching all other training details to their code repository1. We then use it as a feature
extractor for multi-modality registration with the ANTs solver (Tustison et al., 2020) and also finetune
it for few-shot segmentation, as in our experiments in the main text.

As shown in Table 5, matching the parameters of PrimGeoSeg results in performance drops across
3 out of 5 few-shot segmentation datasets, as well as in both registration datasets. Notably, while
PrimGeoSeg had originally outperformed our method on the AMOS-CT few-shot segmentation
experiment in the main paper, its performance drops below ours by 5 mean Dice points when matched
in parameter count, suggesting that the performance gap is a function of network size on that dataset.

A.5 NEGATIVE RESULTS

While our proposed model consistently achieves state-of-the-art performance across several
segmentation and registration benchmarks, it shows interesting trends on the preprocessed
neurite-oasis (Hoopes et al., 2022a) T1w MRI neuroimage segmentation dataset, which is
derived from the larger OASIS (LaMontagne et al., 2019) dataset. For this few-shot segmentation
experiment, we train on 1603 crops, with a batch size of 3, and finetune on one annotated subject
to segment the 35 classes provided by the dataset. In Table 6, we find that our proposed pretrained
network does not improve over random initialization for this particular dataset.

Table 6: Few-shot 3D segmentation results on the neurite-oasis dataset (Hoopes et al., 2022a)
reported as the mean Dice coefficient and bootstrapped std. deviation.

RandInit ModelsGenesis MedicalNet PrimGeoSeg SMIT DisruptiveAE Ours

.82(.01) .84(.01) .75(.01) .84(.01) .83(.01) .80(.01) .82(.01)

This result is consistent with the literature on the limited benefits of representation learning for few-
shot adult neuroimage segmentation on OASIS in terms of Dice coefficient gains, as also reported
in Ren et al. (2022). These trends may stem from the relatively high resolution, tissue contrast, and low
inter-subject variability in OASIS. Further supporting this, prior work Lee et al. (2019) has also shown
that training adult neuroimage segmentation models from scratch on very small datasets can yield
competitive results. Of the 8 remaining segmentation and registration tasks, our model either achieves
the best (7 of 8 tasks) or second-best (1 of 8 tasks) performance, demonstrating its overall robustness.

1https://github.com/SUPER-TADORY/PrimGeoSeg
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B APPENDIX: ADDITIONAL IMPLEMENTATION DETAILS

B.1 DATA ENGINE DETAILS

Our data engine in Fig. 2 A & B has several components. Here, we describe low-level implementation
details. We note that we make extensive use of the MONAI (Cardoso et al., 2022), TorchIO (Pérez-
Garcı́a et al., 2021), and scikit-image (van der Walt et al., 2014) libraries for both label and volume
synthesis.

B.1.1 LABEL SYNTHESIS

The pseudocode in Algorithm 1 summarizes the synthesis process for a single label volume depicted
in Fig.2A. This process assumes the availability of a set Y of binary segmentation labels for different
organs, which serve as templates. Specifically, these segmentations are taken from version 1 of
the publicly available TotalSegmentator dataset (Wasserthal et al., 2023) (CC BY 4.0 license). To
incorporate binary labels with multiple connected components, we merge individual rib labels into a
single binary label for all ribs and also similarly pool the individual vertebral labels.

In Algorithm 1, pfg and penvelope refer to the probability of foreground masking and creating an
envelope around the foreground, respectively, w is the kernel width of the ball kernel used for
morphological dilation and erosion, ◦ refers to a spatial deformation operator, and ∗ denotes the
element-wise multiplication. The Perlin deformations Pσ used are taken from Hoffmann et al. (2021).

Algorithm 1 3D synthetic label map L generation
Input: a dataset Y of binary templates
Output: Synthesized label map L

1: Initialize L ∈ R128×128×128 with all zero entries
2: Sample N ∼ U{20, 40} templates T = {T1, . . . , TN} uniformly at random from Y

3: for i = 1, 2, . . . , N do
4: Center-crop and pad Ti to (128, 128, 128)
5: Warp Ti with random affine matrix Ai s.t. Ti ← Ti ◦Ai

▷ translations and rotations are sampled from U [−5, 5] and U [−π, π], respectively
▷ scales and shears are sampled from U [−0.5, 0.5] and U [−0.5, 0.5], respectively

6: Assign L← i ∗ Ti at spatial indices where Ti > 0
7: end for
8: Median smooth L

9: if pfg > 1/3 where pfg ∼ U [0, 1] then ▷ Foreground mask
10: Sample binary sphere S ∈ B128×128×128 with radius r and center c

where r ∼ U{48, 72} and c ∼ U{32, 96} independently along all axes
11: Warp S with Perlin deformation Pσ s.t. S ← S ◦ Pσ where σ ∼ U [1, 5]
12: Foreground mask L as L← L ∗ S
13: Increment L← L+ 1 at spatial indices where S > 0

14: if penvelope > 0.5 where penvelope ∼ U [0, 1] then ▷ Create envelope around foreground
15: Sample binary envelope E ∈ B128×128×128 where

E = dilate(S,w) ∧ (¬(erode(S,w)) where w ∼ U{2, 3, 4}
16: Assign L← L+ 1 at spatial indices where E > 0
17: end if
18: end if

B.1.2 VOLUME SYNTHESIS

Given a label map L, we use it to conditionally sample two volumes/contrastive views V1 and V2

using an appearance model that is summarized in Fig. 12. Specifically, the two intensity volumes are
generated by sampling from two independent Gaussian mixture models conditioned on the label map
L. These preliminary 3D images are then independently transformed by a biomedical augmentation
pipeline to form a contrastive pair of volumes. The term Zero background in Fig. 12 refers to
setting intensities in the volumes spatially coinciding with the background label to 0.
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Figure 12: Post-Gaussian mixture model volume augmentation pipeline used to generate synthetic
data for pretraining. Blue and red boxes refer to offline and online augmentations, respectively. All
augmentations are applied to 128× 128× 128 volumes. p refers to the pre-defined probability of
applying an individual augmentation and all other hyperparameters mentioned are consistent with
MONAI (Cardoso et al., 2022) conventions.

As the combined pipeline of our label and volume synthesizer is computationally intensive, generating
data on the fly could potentially bottleneck training. To mitigate this, we sample 120,000 3D label
volumes and their corresponding 240,000 contrastive volume pairs offline using the proposed model.
During training, we further apply additional online augmentations using a smaller pipeline. The
offline and online augmentations are indicated in Fig. 12 by the blue and red boxes, respectively.

B.2 NETWORK ARCHITECTURES

We employ a widely used (Billot et al., 2023b; Ren et al., 2022) UNet architecture for pretraining,
fine-tuning, and for use as a feature extractor in our baseline comparisons and ablations. The
architecture is described in Table 7. Each layer that contributes to the contrastive loss also includes an
individual MLP network that projects sampled spatial indices onto an embedding space. Specifically,
the architecture of each MLP consists of two FC(128)-BN-ReLU blocks (where FC(w) is a fully
connected layer of width w), followed by an FC(128) layer and an L2-normalization sequence at
the final layer.

B.3 PRETRAINING IMPLEMENTATION

We compute the contrastive loss in Eq. 1 on pre-activation convolutional features extracted from
layers 7, 9, 12, 15, 18, and 23 in Table 7. Model selection is performed by tracking the validation
contrastive loss to pick the best-performing checkpoint. We train using Adam (Kingma & Ba, 2014)
with a starting learning rate of 2× 10−4 and a step decay towards 0 every 120,000 iterations.

B.4 REGISTRATION EXPERIMENTS IMPLEMENTATION

Below, we first provide details regarding how the baselines were implemented in our registration
experiments and then describe how our network features were integrated with existing solvers. For
volumes of arbitrary grid sizes, we use sliding window inference with a window size of 1283 and an
overlap ratio of 0.8. Further, we use region-of-interest masks for fixed and moving volumes whenever
a registration method can use them.

B.4.1 BASELINE IMPLEMENTATION

SynthMorph-shapes. SynthMorph-shapes is a domain-randomized diffeomorphic registration
UNet trained on synthetic volume pairs generated from label maps. It is optimized using a Dice loss
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Table 7: U-Net architectural details. We use the architecture from (Billot et al., 2023b; Ren et al.,
2022). Conv-BN-ReLU refers to a sequence of 3D convolution with 3 × 3 × 3 kernels, batch
normalization, and pointwise ReLU activations. nc is the channel width multiplier and n is the
number of output channels. In our experiments, both nc and n are set to 16.

Layer index Layer contents

0 Conv-BN-ReLU(nc)
1 Conv-BN-ReLU(nc)
2 Conv-BN-ReLU(nc)
3 MaxPool(2), Conv-BN-ReLU(2nc)
4 Conv-BN-ReLU(2nc)
5 MaxPool(2), Conv-BN-ReLU(4nc)
6 Conv-BN-ReLU(4nc)
7 MaxPool(2), Conv-BN-ReLU(8nc)
8 Conv-BN-ReLU(8nc)
9 MaxPool(2), Conv-BN-ReLU(16nc)
10 Conv-BN-ReLU(16nc)
11 Upsample 2×, Concatenate with layer 8
12 Conv-BN-ReLU(16nc)
13 Conv-BN-ReLU(16nc)
14 Upsample 2×, Concatenate with layer 6
15 Conv-BN-ReLU(4nc)
16 Conv-BN-ReLU(4nc)
17 Upsample 2×, Concatenate with layer 4
18 Conv-BN-ReLU(2nc)
19 Conv-BN-ReLU(2nc)
20 Upsample 2×, Concatenate with layer 2
21 Conv-BN-ReLU(nc)
22 Conv-BN-ReLU(nc)
23 Conv-BN-ReLU(n)

subject to diffusion regularization. We download its pretrained weights2 from the VoxelMorph library
and use their Tensorflow-based registration framework. Lastly, as their network is fully convolutional,
we use the input volumes at their native resolution without resizing.

uniGradICON/uniGradICON+IO. uniGradICON is an approximately diffeomorphic registration
foundation model trained on a variety of datasets. We use the binaries available on their repository3

for our experiments. The off-the-shelf model does not have any hyperparameters at test-time and we
use the default hyperparameters for the iterative variant (uniGradICON+IO).

ConvexAdam. ConvexAdam is a high-performance multimodality registration solver and we use
the b2671f8 commit of the repository4. Here we use the masked variant with default number of
instance optimization iterations (80) and default hyperparameters of the MIND-SSC loss so as to
use the same implementation of MIND-SSC across experiments. All the remaining parameters are
fine-tuned on the validation data.

ANTs-MI. The ANTs-MI baseline was run with the following command using the ANTs library:

antsRegistration \
--verbose 1 \
--dimensionality 3 \
--float 1 \
--output [OUTPUT_FOLDER/moved_, OUTPUT_FOLDER/moved_volume.nii.gz], \

2https://surfer.nmr.mgh.harvard.edu/ftp/data/voxelmorph/synthmorph/
shapes-dice-vel-3-res-8-16-32-256f.h5

3https://github.com/uncbiag/uniGradICON
4https://github.com/multimodallearning/convexAdam/tree/

b2671f86902390dec8dde702d0b583b451d84e98
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--transform SyN[0.15] \
--metric MI[fixed_volume.nii.gz, moving_volume.nii.gz, 1, 48, Random, 0.666] \
--convergence 200x200x100 \
--shrink-factors 3x2x1 \
--smoothing-sigmas 3x2x0vox \
--interpolation Linear \
--masks [fixed_volume_mask.nii.gz, moving_volume_mask.nii.gz]

where fixed_volume.nii.gz and moving_volume.nii.gz are the input volumes to reg-
ister and fixed_volume_mask.nii.gz and moving_volume_mask.nii.gz are binary
masks indicating non-zero / non-background regions.

These settings correspond to using a three-level registration pyramid with the SyN algorithm and the
mutual information loss for 200, 200, and 100 iterations at each level with corresponding level-specific
smoothing kernels.

B.4.2 MODIFICATIONS TO EXISTING REGISTRATION METHODS TO USE OUR NETWORK
FEATURES

As our network produces 16 output channels, we modify existing registration solvers as below.

ANTs. To solve for a warp between a fixed and moving volume pair, we define 16 different
MSE-based loss functions with ANTs. Specifically, each loss estimates the dissimilarity between
corresponding channel volumes produced by our network for the fixed and moving inputs. We also
downscale each individual loss by a tenth to trade off multiple data fidelity terms and regularization.
The remaining modeling decisions and hyperparameters are identical to the baseline and use the
following command:

antsRegistration \
--verbose 1 \
--dimensionality 3 \
--float 1 \
--output [OUTPUT_FOLDER/moved_, OUTPUT_FOLDER/moved_volume.nii.gz], \
--transform SyN[0.15] \
--convergence 200x200x100 \
--shrink-factors 3x2x1 \
--smoothing-sigmas 3x2x0vox \
--interpolation Linear \
--masks [fixed_volume_mask.nii.gz, moving_volume_mask.nii.gz]
--metric MeanSquares[fixed_ch1.nii.gz, moving_ch1.nii.gz, 0.1, 1, Random, 0.666] \
...
--metric MeanSquares[fixed_ch16.nii.gz, moving_ch16.nii.gz, 0.1, 1, Random, 0.666]

ConvexAdam. ConvexAdam already operates on multichannel inputs by using handcrafted MIND-
SSC features. We therefore concatenate our network features with their original features and
additionally multiply the network features by 0.1 for stable optimization. We perform a grid search
over the same hyperparameters as the baseline ConvexAdam and set the remaining modeling
decisions to be consistent with it.

B.4.3 USING EXISTING 3D BIOMEDICAL SEGMENTATION FOUNDATION MODELS FOR
REGISTRATION

In Section 4.3 and Table 2 of the main text, we demonstrate that current 3D biomedical segmentation
models do not produce features that are directly usable by registration solvers such as ANTs. To
elaborate, MedicalNet was excluded from analysis as it only provides a pretrained encoder without
a decoder. The ANTs hyperparameters for all experiments are the same as in App. B.4.2, varying
only in the number of input channels corresponding to the output features produced by each method.
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B.4.4 MM-WHS DATA PREPARATION

Prealignment. The public proportion of the MM-WHS dataset consists of 20 unpaired and annotated
3D CTs and MRIs of the heart, all from different subjects. The CTs are high-resolution CT angiograms
with tight fields of view around the heart, whereas the MRIs often include the subject’s trunk. As
our deformable registration baselines all assume affine pre-alignment, we align all the volumes to a
common space. For accurate groupwise registration to this space, we formulate this as an affine atlas
construction and registration problem (Avants et al., 2010).

All CT volumes are first clipped to [-450, 450] HU. We then arbitrarily select the first CT volume
within the dataset (by subject ID) as an initial reference. We first resample it to a grid size of 160
× 160 × 128 at 1.142× 1.142× 1.283mm3 resolution to define an initial coordinate system. This
resampled volume is then used as an initial target for affine atlas construction with the remaining CT
volumes. We use the following ANTs command5 for groupwise affine alignment:

antsMultivariateTemplateConstruction2.sh \
-a 2 \
-d 3 \
-A 0 \
-o ${outputPath}T_ \
-g 0.2 \
-j 10 \
-n 0 \
-r 0 \
-i 4 \
-c 2 \
-m MI \
-l 1 \
-t Affine \
-q 100x50 \
-f 4x2 \
-s 2x1 \
-b 1 \
-y 0 \
-z initial_target_ct.nii.gz \
input_ct_*.nii.gz

Once an affine CT atlas is estimated, we then similarly register all MRI volumes to this CT atlas.
In particular, due to the difficulty of intensity-based affine registration between the MRI and CT
collections due to domain and FOV shifts, we estimate these affine transformations on the segmen-
tations provided by the dataset and not the volumes themselves. Once all subject-to-atlas affine
transformations are estimated on the segmentation volumes, they are used to warp all of the intensity
volumes into the desired common space. All deformable registration experiments in our paper use
only the intensity volumes and use the segmentations only for evaluation.

Additional labels. MM-WHS provides manual annotations for seven structures including heart
chambers and portions of arteries for its original use in segmentation benchmarking. However,
there are several anatomical structures in these volumes beyond the original labels such as
the spine. Therefore, to better repurpose this data for holistic and non-local multi-modality
registration evaluation, we annotate additional labels for the descending aorta and the spine. We use
TotalSegmentator (Wasserthal et al., 2023) to segment these labels on the CT volumes and manually
verify the results. For the MRI volumes, these new structures are annotated by a domain expert.

B.5 SEGMENTATION EXPERIMENTS IMPLEMENTATION

All image characteristics for each dataset are summarized in Table B.5. The datasets and modeling
decisions were chosen to maximize diversity between the various segmentation settings.

5https://github.com/ANTsX/ANTs/blob/master/Scripts/
antsMultivariateTemplateConstruction2.sh
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Table 8: Segmentation experimental dataset statistics. All MRI modalities and sequences signifi-
cantly differ from dataset to dataset.

WUFetal PROMISE12 MSD-Heart L2RAb-MRI AMOS-CT FeTA

Grid size (112, 112, 80) (320, 320, 24) (320, 320, 115) (192, 160, 192) (512, 512, 115) (256, 256, 256)

Original res. (mm3) (3.0, 3.0, 3.0) (0.625, 0.625, 3.6) (1.25, 1.25, 1.37) (2.0, 2.0, 2.0) (0.68, 0.68, 5.0) (0.5, 0.5, 0.5)

Training res. (mm3) (3.0, 3.0, 3.0) (0.625, 0.625, 0.625) (1.25, 1.25, 1.37) (2.0, 2.0, 2.0) (1.5, 1.5, 2.0) (0.5, 0.5, 0.5)

Training crop size 803 963 963 1283 963 1283

Training batch size 4 4 4 4 4 4
Num. of labels 4 1 1 4 15 7
Modality MRI MRI MRI MRI CT MRI
Finetuning vols. 3 2 1 3 1 3
Full supervision vols. 60 50 6 24 180 40
Validation vols. 15 20 10 12 20 20
Testing vols. 24 30 4 12 100 20

For the publicly available datasets, we (re)split whatever annotated data is publicly available from the
respective datasets. In particular, we resplit MSD-Heart, FeTA, and L2RAb-MRI’s publicly available
training sets to obtain training, validation, and held-out testing data. For AMOS-CT, we resplit the 200
volumes in the training set to obtain new training and validation splits and use their original and public
100 validation volumes as held-out testing data. For PROMISE12, we use the public splits, considering
the test and livechallengetest splits to be its testing and validation splits, respectively.

PROMISE12 and AMOS-CT are highly anisotropic in resolution and are thus resampled to 0.625×
0.625× 0.625mm3 and 1.5× 1.5× 2.0mm3 resolution, respectively, with the latter resolution for
AMOS-CT chosen to match the CT finetuning setting of the SwinUNETR baselines (Valanarasu et al.,
2024). The CT intensities of AMOS-CT were clipped to [-450, 450] HU and the spatial grid extents
of MSD-Heart and (post-resampling) PROMISE12 were padded to have a minimum of 96 slices.

Our UNet baselines use the crop sizes listed in Table B.5 and our SwinUNETR-based pretrained
baselines use the crop sizes used for pretraining and finetuning in their respective original papers for
both consistency and due to their pretrained transformer backbones. All augmentations are performed
online and the MRI and CT dataset experiments in Table B.5 use the augmentations listed in Table 9
top and bottom, respectively. When finetuning, we train for 37,500 iterations with a batch size of four
3D crops using Adam with a starting step size of 2× 10−4 cosine decayed to 0. Finally, we exclude
the background label when reporting Dice statistics.

B.6 ALTERNATIVE LABEL SYNTHESIS MODELS

As in Sec. 4.3/label generation, we study the effect of our label ensemble synthesis model by replacing
it with other label models used in biomedical image analysis. We detail our implementation of these
alternatives below and visualize them in App. A.1.

smshapes. For smshapes, we follow the implementation of Hoffmann et al. (2021) for label
generation with two key exceptions. First, for the label synthesis model, they fix the number of labels
to synthesize to 26. For fair comparison with our framework which varies the number of labels in
each volume, we modify smshapes to sample the same variable number of shapes. Second, for the
appearance model, we match the hyperparameters of their GMM implementation to ours and also use
multiplicative Perlin noise such that the appearance models are now matched and only the source of
labels varies.

Brains. As opposed to synthesizing labels, the Brains experiment uses real brain labels in a manner
similar to (Billot et al., 2023b). This is done to study the effect of synthesized label ensembles with
randomized positions versus real biomedical anatomical configurations. We use 492, 500, and 581 T1-
weighted brain scans from ADNI, HCP, and IXI, respectively, and segment them with SynthSeg (Billot
et al., 2023b) to obtain training label maps. Using these labels, we sample 120,000 label volumes
with 240,000 contrastive views as in our proposed model and match all other hyperparameters.
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Table 9: Augmentations for segmentation fine-tuning experiments for MRI datasets (top table) and
CT datasets (bottom table). Hyperparameters correspond to MONAI conventions (Cardoso et al.,
2022).
Prob. MRI augmentation Hyperparameters

1.0 Spatial crop Crop size
0.33 Gaussian Noise µ = 0.0, σ = 0.1
0.33 Bias field coefficients ∼ U [0, 0.075]
0.33 Gibbs ringing α ∼ U [0, 0.33]
0.33 Gamma transform γ ∼ U [0, 4.5]
0.33 Gaussian blur per-axis σ ∼ U [0, 0.1]
0.33 Gaussian sharpen α ∼ U [1, 30], σ1 ∼ U [0, 3.0], σ2 ∼ U [0, 1.0]
1.0 Affine warp rotation∼ U [−π/4, π/4], scale∼ U [0.8, 1.2], shear∼ U [−0.2, 0.2]

(all per axis)

Prob. CT augmentation Hyperparameters

1.0 Spatial foreground crop Crop size, foreground label weight of 0.5
0.33 Gaussian Noise µ = 0.0, σ = 0.1
0.33 Gamma transform γ ∼ U [0, 4.5]
0.33 Gaussian blur per-axis σ ∼ U [0, 0.1]
0.33 Gaussian sharpen α ∼ U [1, 30], σ1 ∼ U [0, 3.0], σ2 ∼ U [0, 1.0]
1.0 Affine warp rotation∼ U [−π/4, π/4], scale∼ U [0.8, 1.2], shear∼ U [−0.2, 0.2]

translation∼ U [−32, 32] (all per axis)

B.7 ALTERNATIVE PRETRAINING LOSSES

Denoising pretraining. For denoising pretraining, we maintain our data engine but pretrain the UNet
to instead invert the intensity augmentations applied to the output of the initial Gaussian mixture
model per sample, which is inspired by Iglesias et al. (2023). The UNet has a matched architecture
to ours with an additional single convolutional layer mapping to a single-channel output volume. We
train using the L1 loss for denoising, match the optimization hyperparameters to our method, and
select the checkpoint with the best validation L1 loss.

Removing label supervision. As our data engine provides exact label supervision for each voxel,
we use multi-positive label-supervised contrastive learning. However, several large-scale models are
pretrained with self-supervised objectives not using any label supervision. To benchmark against
these approaches, we use the self-supervised positive pair-only non-contrastive framework of Ren
et al. (2021) with its losses applied to the same network layers as ours. Its variance and covariance
loss weights are set to 0.01, the orthogonality weight is set to 100, and we halve the initial learning
rate for stable training on our data as opposed to real brains used in their work.

B.8 WUFETAL DATASET DETAILS

The in-house Whole Uterus Fetal (WUFetal) BOLD MRI dataset consists of 99 whole uterus volumes
covering various pathologies, gestational ages, imaging artifacts, and the presence of twins. Due
to this variability, this is a highly challenging dataset for few-shot segmentation. These scans were
acquired on a 3T Skyra Siemens scanner using multi-slice gradient echo EPI sequences at 3mm
isotropic resolution (TR = [5-8] ms, TE = [32-38] ms, α = π/2). All analyses were performed
retrospectively on anonymized data and are IRB-approved.
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