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ABSTRACT

We present VoxelPrompt, an end-to-end image analysis agent that tackles free-
form radiological tasks. Given any number of volumetric medical images and a
natural language prompt, VoxelPrompt integrates a language model that generates
executable code to invoke a jointly-trained, adaptable vision network. This code
further carries out analytical steps to address practical quantitative aims, such as
measuring the growth of a tumor across visits. The pipelines generated by Vox-
elPrompt automate analyses that currently require practitioners to painstakingly
combine multiple specialized vision and statistical tools. We evaluate Voxel-
Prompt using diverse neuroimaging tasks and show that it can delineate hundreds
of anatomical and pathological features, measure complex morphological proper-
ties, and perform open-language analysis of lesion characteristics. VoxelPrompt
performs these objectives with an accuracy similar to that of specialist single-
task models for image analysis, while facilitating a broad range of compositional
biomedical workflows.

1 INTRODUCTION

Clinicians and scientists routinely pose complex questions involving specific targets in medical
imaging that extend well beyond simple segmentation or classification tasks. These questions in-
volve multi-step efforts to track the evolution of a particular pathology over many scans, quantify
subtle asymmetries of a specific anatomy, or integrate information from multiple acquisitions.

As a detailed example, consider tracking the growth of a specific lesion over time in a patient with
multiple abnormalities. After image pre-processing, the first challenge is segmenting only the spe-
cific lesion of interest. Available tools rarely generalize to diverse, real-world lesion types, and even
those that do offer no way to identify a specific lesion using natural language descriptors (e.g., by
anatomical location, size, or intensity). Additionally, current tools do not typically accommodate a
flexible number of acquisitions from a scan session. As a result, the user must choose a single suit-
able scan, develop a custom pipeline to programmatically select the target lesion, repeat the process
for later scans, and then compute the desired downstream metrics to track changes.

The example above illustrates a fundamental barrier in integrating AI in real imaging workflows.
While existing tools perform well on specific segmentation or classification targets (Billot et al.,
2023; Isensee et al., 2025), they are specialized to their intended use cases and cannot be used
directly to perform broader, integrated analyses that require executing multiple steps. This task-
level specialization limits the adoption of AI in radiology, leading to practitioners with complex
radiological questions needing to manually chain together multiple fragile, task-specific models and
develop extensive post-processing and metric-extraction workflows for each new study.

VoxelPrompt is fundamentally different in functionality and design from existing medical image
analysis systems. In VoxelPrompt, we jointly train a language model agent and vision network from
scratch to generate and execute end-to-end image analysis workflows. Given a task described in
natural language, the agent iteratively orchestrates a sequence of instructions as executable code.
The dynamically evaluated instructions generate spatial features (e.g., segmentations) using the vi-
sion network, incorporate natural language responses, and access a library of functions to compute
and provide quantitative outputs. Through diverse output modalities, VoxelPrompt can segment and
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Figure 1: Illustrative examples of VoxelPrompt capabilities, each showing the input prompt (gray)
and volumes with VoxelPrompt’s predicted annotations and language responses (purple).

localize user-specified anatomical and pathological regions of interest, calculate measurements that
relate multiple scans to one another, and perform biomedical characterization (Figure 1).

We make several technical contributions to realize VoxelPrompt’s capabilities for real-world medical
imaging aims. Our convolutional vision network enables fine-grained, language-controlled visual
analysis by integrating jointly-trained language model embeddings as conditioning. To also support
multi-acquisition and longitudinal studies (Reuter et al., 2012), the vision network uses attention to
process volumetric features across sequences of any length. Further, unlike typical models tied to
fixed channels and voxel spacing (Zhang et al., 2024), VoxelPrompt operates on variable-sized inputs
at native resolution. This native processing yields substantial memory and runtime efficiency, en-
abling the joint training of vision and language components on large neuroimaging volumes on stan-
dard GPUs without prior resampling. Lastly, we facilitate robustness to acquisition type as well as
anatomical and pathological variation by creating and training on a large neurological dataset com-
bining public cohorts, new annotations of unlabeled pathological volumes, and simulated lesions.

We focus on brain imaging and show that VoxelPrompt enables end-to-end analysis on nuanced
and diverse tasks covering a wide range of MRI and CT acquisitions, anatomies, and diseases.
Quantitatively, we show that a single VoxelPrompt model captures, and often exceeds, the in-
dividual accuracy and capabilities of many single-task specialist neuroimaging baselines, while
retaining unique language prompted flexibility. These results highlight VoxelPrompt’s promise as a
foundation for tackling diverse and complex radiology workflows.
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2 RELATED WORK

Brain Region Analysis. Widely-used neuroimage analysis pipelines typically delineate regions and
quantify their size, shape, composition, and change over time (Fischl, 2012; Jenkinson et al., 2012).
Modern approaches train networks to segment anatomical and pathological structures, including
cerebral subregions (Billot et al., 2023; Henschel et al., 2020), vessels (Hilbert et al., 2020; Livne
et al., 2019), and lesions (Hssayeni et al., 2020; Liu et al., 2021). While performant, these net-
works generally work for fixed segmentation targets and require significant human involvement for
analyzing data and deriving downstream ROI measures. VoxelPrompt aims to match or outperform
these methods in segmentation accuracy, while tackling a wider range of targets, enabling flexible
specification of target regions, and facilitating end-to-end workflows.

Learning Across Medical Imaging Tasks. Recent medical imaging methods aim to improve per-
formance by exploiting shared representations across diverse segmentation, classification, registra-
tion, and statistical modeling objectives in a single framework (Elmahdy et al., 2021; Graham et al.,
2023; Tellez et al., 2020; Liu et al., 2025; Czolbe & Dalca, 2023). Broad, segmentation-focused
tools, like interactive or in-context segmentation models, can adapt to specific biomedical targets,
prompted by partial image annotations (Cheng et al., 2023; Luo et al., 2021; Ma et al., 2024; Wong
et al., 2023) or example image-segmentation pairs (Min et al., 2021; Xie et al., 2021; Butoi et al.,
2023; Ouyang et al., 2022; Rakic et al., 2024; Roy et al., 2020). However, these multi-task models
do not aim to address a complete analytical pipeline and can require finetuning in real scenarios. In
contrast, VoxelPrompt integrates supervision from many tasks to create computational workflows,
where multiple components interact to carry out requested analyses.

Medical Vision-Language Models. Vision-language models (VLMs) trained on large-scale
biomedical image-caption datasets (Johnson et al., 2019; Lin et al., 2023; Zhang et al., 2023a) can
facilitate biomedical visual question-answering (Chen et al., 2023a;b; Zhang et al., 2023a;b) and
clinical report generation (Bannur et al., 2024; Wang et al., 2023c;b). However, current biomedi-
cal VLMs remain largely limited to narrow-domain, text generation tasks, and do not capture the
quantitative metrics required in real-world clinical imaging workflows. In contrast to current vision-
language models that produce text outputs in a black-box manner, VoxelPrompt explicitly produces
code for all relevant intermediate outputs and a traceable sequence of operations. This provides
analytical transparency for high-stakes applications. Also, unlike existing models, the VoxelPrompt
operations involve explicit vision operations to compute and present images depicting the essential
intermediate features. Finally, aside from few recent works (Chen et al., 2023a;b; Liu et al., 2023;
Wu et al., 2025; Zhou et al., 2024), most models are trained exclusively on two-dimensional image
slices, often X-rays, making them inappropriate for MR and CT imaging. VoxelPrompt is instead
trained directly at native acquisition resolution, enabling it to process 3D volumes.

Language Models as Agents. Recent efforts extend large language models beyond plain text pre-
diction into agents capable of planning and executing actions for computational tasks. Often, these
generate code (Gupta & Kembhavi, 2023; Ke et al., 2025) that call external APIs for mathematical
computation (Ruan et al., 2023; Gou et al., 2023), image analysis (Subramanian et al., 2023; Surı́s
et al., 2023; Yang et al., 2023), scientific discovery (Bran et al., 2023; Boiko et al., 2023), and more.
Adaptive, feedback-driven agents address complex and dynamic problems by iteratively planning,
executing, and interpreting intermediate outcomes rather than predicting entire action sequences at
once (Huang et al., 2022; Rana et al., 2023; Wang et al., 2023d;a; Yao et al., 2022; Zhu et al., 2023).
Building on this idea, VoxelPrompt trains an adaptive agent that interacts with a library of processing
functions. Unlike other methods, VoxelPrompt jointly trains an adaptable vision network to guide
image processing. Recent work in medical imaging (Li et al., 2024) trains an agent to select from
a set of pretrained, task-specific tools, but it does not execute downstream operations or leverage
flexible language prompting to distinguish ROIs with specific characteristics as in VoxelPrompt.

3 METHODS

3.1 MODELING DETAILS

VoxelPrompt processes volumes V in response to a text prompt p. A language model agent α trans-
lates the prompt into Python code executed in a persistent environment Ω, invoking actions involving
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>> ratio = s2.volume() / s1.volume()
>> show("{ratio} increase (+{diff} ml)")

“compute the change in tumor
size since the last visit”

Visit 1 Visit 2

>> enc = encode(v1   , v2   )
>> read(enc)

>> s1, s2 = enc.segment(v1   , v2   )
>> delta = s2.volume() - s1.volume()
>> read(delta)

4.3
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Figure 2: Top: VoxelPrompt takes a text prompt and volumes as input to a trainable agent α. The
agent iteratively produces executable code in a Python environment Ω, which controls a jointly-
trained vision model m. Bottom: To solve an example language-prompted task, the agent α in-
terprets execution outcomes z (blue) to guide subsequent instruction prediction across multiple
steps. To perform vision operations, such as volume encoding or generation, α employs vision
networks menc and mgen, which are manipulated by image-specific latent instruction embeddings ϕ.

mathematical computation, morphological operations, and interface interaction. A core function set
runs a jointly trained vision network directed by the agent to perform vision operations. Figure 2
summarizes this framework and outlines an example use-case. We provide low-level implementation
details in Appendix A.

Agent. The agent α produces code iteratively, with each step building on outcomes of prior actions.
At step i, it generates executable code ci = α(µi) based on a state representation µi ∈ Rℓ,d with
sequence length ℓ and embedding dimension d. The code runs in environment Ω, which preserves
variables across steps. Intermediate results from Ω can be read and embedded into a representation zi
and incorporated into the next state µi+1 = µi q zi, where q denotes sequence concatenation. The
initial state µ1 encodes the prompt p and acquisition date metadata for each volume v ∈ V . This loop
of code generation, execution, and feedback continues until a stopping code signals completion.

Vision Network. Several functions in environment Ω invoke a shared convolutional vision network,
consisting of an input feature encoder E = menc(V, ϕ) and a volume generator W = mgen(E , ϕ).
The latent embeddings ϕ are produced by the agent, passed as arguments to the functions, and
condition the vision network for a specific goal. For example, they might direct the vision network
to segment the edema around the lesion in the frontal lobe. Vision network outputs E , W can then
be further processed by downstream actions to execute the user prompt.

Volume Interaction. The vision subnetworks share information across an arbitrary number of input
volumes using an attention mechanism. Each input volume v is processed by menc (or its encod-
ing Ev processed by mgen), producing individual streams of intermediate activations from each vol-
ume that interact with each other at each layer. Specifically, for voxel features as ∈ Rc in volume
stream s, we concatenate as with stream-specific ϕs, and use a fully-connected layer to yield a′s ∈
Rc. We then stack corresponding voxel representations a′s across S streams to construct A′ ∈ RS,c.
We interact streams in A′ using attention with dimension b: B = f(softmax(QKT b−1/2)V ) + A,
where Q,K, V ∈ RS,b are learnable linear transformations of A, and fully-connected layer f
projects the output to RS,c. We then separate B into stream-specific voxel features for each volume.

Native Space Processing. Volumetric image formats define a world-coordinate transform specify-
ing in-plane voxel spacing x and inter-slice spacing y, with anisotropy ratio r = y/x. Standard tools
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often resample images to isotropic resolution, which greatly inflates data size for thick-slice acqui-
sitions. Instead, we implement a vision network that operates in native voxel resolutions by tracking
and updating spacings throughout the multi-scale hierarchy. In the downsampling arm, following
resolution level n, the target in-plane spacing is set to xn+1 = 2xn, while the target slice spacing
is updated to yn+1 = xn+1 only when rn ≤ 2. In the upsampling arm, voxel spacings are inferred
from the skip connections. During stream interaction, volume features are resampled to a common
geometry, then returned to their previous space.

Supervised Training. We jointly train the language model α and vision network from scratch on
a curated, diverse task set T (Section 3.2). Each task τ ∈ T is paired with target (ground-truth)
code c∗ that carries out the task objective, as illustrated in Figure 2. At each training step, we
sample τ ∼ T , generate a prompt p, and sample input volumes V with ground-truth outputs W∗.
The training loss is Lce

(
P (c), c∗

)
+ λ

∑|W|
j=1 Limg

(
Wj ,W∗

j

)
, where P (c) is the language model

output, volumes W are generated by the vision networks while executing c∗, Lce is cross-entropy,
and Limg compares predicted and target volumes (using soft Dice loss for segmentation).

3.2 TRAINING TASKS AND DATA DESIGN

We construct and curate a dataset T of brain imaging tasks, designing new task formulations and
labels across a wide range of image acquisitions, segmentation protocols, and annotation types.
We use this dataset to both train and evaluate VoxelPrompt in the joint prediction of analytical
instructions, spatial delineations, and natural language descriptions. We include a set of clinically-
oriented objectives, which are broadly categorized as either ROI processing or pathology description
tasks. For each task, we create ground-truth code c∗, used in training and evaluation. Additional
training data details are described in Appendix B.

Training Code for Quantitative ROI Processing. Quantitative processing tasks involve image
feature segmentation, optionally followed by downstream steps to compute ROI measures. We in-
clude a core segmentation task for all structures and pathology classes in our dataset. Downstream
processing tasks use predicted segmentations, sometimes in conjunction with the input volumes.
For example, some tasks involve removing, extracting, or cropping the field of view (FOV) around
a segmented region. Others use segmentations to compute ROI-specific statistics of image signal
intensities (e.g., mean intensity). Morphological tasks analyze ROI shape and compute total vol-
ume, bounding box dimensions, or the maximum height, width, and depth of a segmented structure.
We also include tasks that compute and compare such metrics across multiple segmentations. For
example, longitudinal tasks measure change in ROI properties across a series of scan sessions, and
multi-region tasks compare metrics from different ROIs in a single scan session. To support these
applications, ground-truth code c∗ specifies a sequence of functions that predict the required seg-
mentations, compute relevant metrics, and format the results into an output message (Figure 2).

Training Code for Question Answering. We also train on question-answering tasks, where Voxel-
Prompt produces natural language responses from a combinatorially large set of possible answers.
For example, some tasks involve classifying lesion signal intensity as hyperintense, hypointense, or
isointense relative to surrounding tissue, while others require identifying anatomical location. Cer-
tain tasks integrate information across multiple images, for example, detecting restricted diffusion
from paired DWI and ADC maps, or assessing post-contrast lesion enhancement. We handcraft
a target language response for all possible answers. For each task, we construct the ground-truth
instruction code c∗ with functions to (1) encode the input volumes, (2) read the encoded volume
features, and (3) output a text response with the correct natural language answer.

Training Prompt Synthesis. We synthesize a combinatorially diverse set of prompts for training.
For each task τ , we define a set of prompt templates Pτ containing placeholders to accommodate
multiple words, terminologies, and phrases with similar meanings. We compile a list of interchange-
able text Ck for each placeholder k. To generate a prompt p for task τ , we sample a template from
Pτ , then fill each placeholder k with text sampled from Ck. Placeholders may themselves con-
tain other placeholders, making the process recursive. This yields a diverse distribution of prompts
spanning clinical and imaging terminology, as well as variations in tense, syntax, and word choice.

Training Images and Segmentations. We assemble and annotate a collection of 6,925 3D brain
MRI and CT scans from 15 public datasets, comprising 185 bilateral anatomical structures and 14
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pathology classes, focusing on a breadth of imaging types, regions of interest, and tasks. The MRI
sequences span T1w, T2w, FLAIR, PD, GRE, and DWI with various scan resolutions. The subjects
are split into 4,852 training, 213 validation, and 1,860 test volumes. Anatomical segmentations are
derived from established pipelines (Fischl, 2012; Greve et al., 2021; Hoopes et al., 2022), atlas anno-
tations (Adil et al., 2021; Pauli et al., 2018), manual corrections, and manual labeling of additional
structures in a small set of images, yielding high-quality whole-brain labels across multiple cohorts.

To capture diverse pathologies, we integrate expert-annotated lesions from BraTS, ISLES, ATLAS,
and WMH (Baid et al., 2021; Hernandez Petzsche et al., 2022; Liew et al., 2022; Kuijf et al., 2019),
covering gliomas, edema, infarcts, and white matter hyperintensities. We further compile rare cases
from Radiopaedia and manually delineate infarcts, arachnoid and epidermoid cysts, papillomas,
and many others. These new annotations also include sub-components like edema, enhancing tissue,
and heterogeneous intra-lesion features. Finally, we augment the dataset with a conditional synthesis
procedure that generates diverse lesions in healthy brains, broadening the distribution of pathological
presentations (Appendix B.5). To support analysis of lesion characteristics, we annotate each lesion
with its anatomical location, intensity profile, size, and position relative to surrounding structures,
and, when applicable, indicators of diffusion restriction or post-contrast enhancement.

4 EXPERIMENTS

VoxelPrompt addresses non-standard, open-ended workflows rather than a single fixed task. Its
evaluation, therefore, requires a diverse set of complementary experiments. We first present experi-
ments that evaluate VoxelPrompt’s ability to generate and execute accurate end-to-end brain analyses
across several representative practitioner use-cases. We then present analyses and ablations of mod-
eling decisions. We provide further experimental and test data details in Appendix C and include
additional results demonstrating disease characterization performance in Appendix D.

4.1 BRAIN IMAGE ANALYSIS

Ad hoc Neuroimaging Workflow Generation. Figure 1 shows that a single VoxelPrompt model
can execute a wide range of workflows on held out test data, including localizing brain anatomy
and pathology regions, extracting intensity metrics and morphology measures within user-specified
ROIs, and masking or cropping tissues for focused visualization. The model can compute and
compare metrics across ROIs, such as hippocampal asymmetry, normalized subcortical volumes, and
acute versus chronic hemorrhage components, as well as track longitudinal changes such as tumor
size across scans. By integrating multiple acquisitions, VoxelPrompt can further characterize lesion
locations and tissue properties, such as diffusion restriction or post-contrast enhancement. Figure 3A
shows that VoxelPrompt facilitates fine-grained specificity by supporting flexible, language-guided
analysis, such as isolation or differentiation of lesions in multifocal disease based on signal intensity,
size, relative position, or anatomical context (e.g., hemisphere, lobe, etc.). Examples in Figure 1
reflect common practitioner use-cases, but many are qualitative as no benchmark dataset currently
exists to evaluate free-form workflow generation outcomes for complex pathology analyses.

Text-prompted Zero-shot Lesion Segmentation. Zero-shot brain lesion segmentation enables
medical practitioners and researchers to rapidly localize and quantify pathologies without requir-
ing a disease-specific model. We evaluate VoxelPrompt’s zero-shot segmentation capabilities on
entirely unseen abnormality datasets using a dataset-specific prompt: “segment the ⟨ROI⟩,” where
⟨ROI⟩ is the target lesion type or informative description. We benchmark our approach against
multi-dataset foundation models that include brain pathology segmentation as training tasks. These
include volumetric BiomedParse v2 (Zhao et al., 2024; 2025a) and SAT (Zhao et al., 2025b), both
of which use text prompts to target abnormalities. Most other existing text-prompted vision models,
or vision–language models (VLMs), are limited to question-answering tasks, and do not perform
quantitative analyses such as segmentation, thereby precluding them as baselines. We also use
MoME (Zhang et al., 2024), a recent generalizable brain abnormality segmentation model. Our
evaluation suite spans diverse targets: 30 meningiomas from BraTS-MEN (LaBella et al., 2024),
9 pediatric MRIs of multiple sclerosis lesions from PediMS (Popa et al., 2025), 35 resection cavi-
ties from EPISURG (Pérez-Garcı́a et al., 2020), and 36 hemorrhages from BHSD (Wu et al., 2023).
VoxelPrompt has not been trained on these datasets, allowing for zero-shot performance assessment.
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Figure 3: VoxelPrompt performance. (A) Free-form text prompts, shown below each image, guide
VoxelPrompt to perform targeted analysis and delineation of nuanced, context-specific image re-
gions, even in scans with multiple lesions. (B, C) On unseen datasets with diverse brain abnormal-
ities, VoxelPrompt is the only method achieving consistently high-quality results both qualitatively
and quantitatively. (D) Compared to longitudinal FreeSurfer, VoxelPrompt achieves the same effect
size in distinguishing Alzheimer’s disease from controls with a 105× faster runtime. (E) Voxel-
Prompt outperforms the state-of-the-art specialist model (SynthSeg) on whole brain segmentation.

Figures 3B and C demonstrate that VoxelPrompt is the only method that achieves consistently high
performance across all lesion target types, and on average achieves the highest Dice score. We find
that no baseline achieves generalization across abnormalities, and the second-best method varies
from dataset to dataset. Quantitatively, VoxelPrompt achieves a mean 12.53 Dice points higher than
MoME, the overall second-best method. Appendix Figure 6 shows per-subject performances.

Whole Brain Anatomical Segmentation. We evaluate VoxelPrompt’s ability to segment diverse
neuroanatomical targets. Since many brain structures are bilateral, we prompt VoxelPrompt to “seg-
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Figure 4: Ablations and analyses. (A) A single VoxelPrompt model trained jointly on all tasks
matches or exceeds task-specific models for both lesions (left) and anatomy (right). Asterisks indi-
cate statistically significant differences. (B) Our proposed native-resolution convolutions are more
efficient in runtime and memory than isotropic resampling. (C) Our attention mechanism for multi-
input volume interaction is more robust to image corruptions compared to max and mean reductions.

ment the left and right ⟨ROI⟩” to generate joint segmentations, where applicable. We compare
against the widely used state-of-the-art SynthSeg v2 (Billot et al., 2023) method for multi-class
anatomical segmentation, which generalizes across the diverse acquisition contrasts exhibited in our
image dataset. We use a structural MRI test set of 108 unseen volumes, which span various tissue
contrasts and contain ground-truth segmentations for the 45 structures predicted by SynthSeg.

Figure 3E shows that VoxelPrompt significantly outperforms SynthSeg (p < 0.05) on 23/45 ROIs,
with a mean Dice improvement of +1.1 ± 2.3% over all structures. While VoxelPrompt achieves
a modest improvement, we emphasize that our main goal is not to outperform established tools
for segmentation sub-tasks, but rather to provide reliable anatomical segmentations while retaining
VoxelPrompt’s unique flexibility of natural language prompting for workflows.

Longitudinal Analyses. Figure 1 shows qualitatively that VoxelPrompt performs volumetric anal-
yses across time for various pathologies. Here, we quantify performance for longitudinal analyses
of anatomical structures, a core component of large neuroimaging studies. We aggregate 100
subjects with two MRI sessions separated by two years from the ADNI dataset (Weber et al., 2021),
equally split between controls and Alzheimer’s disease (AD) subjects. We assess VoxelPrompt’s
off-the-shelf ability to measure the change in AD-affected structures over time, and use that to
distinguish controls from AD subjects. Specifically, we compare effect sizes and runtime against
longitudinal FreeSurfer (Reuter et al., 2012), the widely used standard for multi-session analysis.
As demonstrated in Figure 3D, VoxelPrompt can detect well-established AD-related effects, such as
increased hippocampal atrophy and increased ventricle volume expansion over time, with a similar
effect size to FreeSurfer, while offering a dramatic 3.8× 105 speedup in runtime.

4.2 ABLATIONS AND ANALYSES

Multi-Task Training. We test whether the proposed single VoxelPrompt model trained jointly on
multiple tasks can match the performance of single-task specialist networks. We optimize individual,
label-specific segmentation networks with the same architecture as the VoxelPrompt vision network,
for a subset of distinct segmentation tasks, using a soft Dice loss. Since optimizing a specialized
baseline for each ROI in our training dataset is computationally prohibitive, we select a subset of
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10 anatomical and 7 pathology targets spanning diverse shapes and locations. In total, the resulting
evaluation subset encompasses 638 held-out subjects.

Figure 4A shows that VoxelPrompt performance is on par with (p > 0.05) or exceeds (p < 0.05) the
performance of 13/17 single-task specialists. The mean Dice difference relative to the specialists
is +4.3 ± 5.7% for pathology targets and −0.1 ± 0.3% for anatomical structures. This shows that
multi-task training in VoxelPrompt rivals specialist models, while offering substantial improvement
for brain abnormality segmentation, especially for variable lesions and limited data.

Native Resolution Efficiency. We evaluate the efficiency gains of the proposed native-resolution
vision network by comparing the processing of images at their native resolution to the standard
approach of conforming all inputs to a 1 mm3 isotropic geometry (Billot et al., 2023). For both
approaches, we measure inference runtime, peak GPU memory during inference, and training mem-
ory incurred during the backward pass of a single optimization step using the VoxelPrompt model.
Image geometries are drawn from a distribution reflecting those encountered in a single clinical scan
session (Appendix C.3), and results are averaged over 500 samples. To assess scalability, we repeat
the experiment with increasing numbers of input images per sample.

Figure 4B shows that, averaged across all numbers of input volumes, native-resolution processing
achieves a 2× reduction in inference runtime and a 2.4× memory reduction compared to isotropic
resolution conformation. Isotropic resampling in training incurs 2.2× higher memory costs, ren-
dering it challenging to train a multi-modal model that accepts only isotropic inputs on standard
hardware. For example, with 5 input volumes, frequently present in a longitudinal MRI series,
isotropic inputs cause out-of-memory errors on 90% of sampled batches on an 80 GB GPU.

Mechanisms of Stream Interaction. We compare our attention-based interaction module with
existing non-parametric alternatives (Butoi et al., 2023) that interact features across image inputs
using mean or max reductions. To isolate the effect of interaction, we train vision-only models
using three mechanisms: attention, mean, and max reduction (Appendix C.5). We train models
using synthetic multi-contrast brain images generated from 360 MRIs using a domain randomization
pipeline (Gopinath et al., 2024). Synthetic inputs enable us to explicitly test accuracy gains from
multi-contrast integration. We also measure robustness to groups of images of variable quality by
synthetically corrupting a subset of images in a group. We evaluate using 500 synthetic brains
with arbitrary contrasts, measuring average Dice over 35 anatomical labels. We find that all three
mechanisms achieve similar overall accuracy improvements as the number of uncorrupted inputs is
increased (see Appendix Table 2). However, as shown in Figure 4C, attention interaction is markedly
more robust to image quality: when including corrupted inputs, Dice degrades by only 0.6± 3.4%,
compared to 4.6± 4.5% and 5.4± 4.0% for max- and mean-reduction, respectively.

5 DISCUSSION

Limitations and Future Work. The VoxelPrompt vision and language networks are trained from
scratch on simulated user prompts generated from templates, which limits their utility when given
entirely unseen prompts. This limitation can be addressed by constructing more diverse datasets
containing a broader range of tasks, either through simulations or language instructions from real
users. While VoxelPrompt was trained on a combination of public brain imaging datasets and
images we aggregated and annotated from the open Internet, its training set can be extended further
by inferring tasks from clinical images and their associated reports, which might better cover the
complex edge-case pathologies seen in practice. Additionally, instead of training the language
model from scratch, a lightweight pre-trained language model with broad programming and natural
language knowledge could be finetuned to support generalization to new tasks. We believe that our
training strategy is generic and could be productively applied to radiology beyond neuroimaging.

Conclusions. We introduced VoxelPrompt, a vision-language system that can address radiological
aims not possible with existing methods as well as tasks that today require a multitude of specialized
models and extensive manual user work. We demonstrated that agent-based VoxelPrompt accurately
solves a broad spectrum of neuroimaging tasks involving end-to-end image analysis. Moreover, it
provides transparent execution steps that can provide users with confidence in its results. We antic-
ipate VoxelPrompt’s use in projects, ad hoc studies, and clinical pipelines, empowering biomedical
users to adopt AI into their medical imaging workflows.
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Sébastien Ourselin. Simulation of brain resection for cavity segmentation using self-supervised
and semi-supervised learning. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 115–125. Springer, 2020.

Ana Luı́sa Pinho, Alexis Amadon, Torsten Ruest, Murielle Fabre, Elvis Dohmatob, Isabelle
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A MODEL IMPLEMENTATION DETAILS

We implement VoxelPrompt with PyTorch (Paszke et al., 2019) and use Python as the programming
language of the code c and persistent programming environment Ω. To support the wide range of
imaging operations required by T , we develop and use a PyTorch library of volumetric medical
image utilities, called Voxel, available at github.com/dalcalab/voxel.

A.1 LANGUAGE AGENT

We implement the agent model α as a decoder-only transformer stack, using a randomly initialized
LLaMA architecture (Touvron et al., 2023; Wolf et al., 2019) with 16 transformer blocks, a hidden
representation of size d = 512, a linear representation of size 2048, and 32 attention heads. We
convert text into an embedding space by splitting character groups into tokens (from a vocabulary
of size γ) and mapping them to a sequence of Rd features via an embedding matrix in Rγ,d. We use
the pre-computed tokenizer released with LLaMA 2, with γ = 32,000.

The language model auto-regressively generates instruction embeddings φ = φc q φϕ based on
the input µ. We pass φc through a fully-connected layer to obtain text token probabilities P (c),
and decode into code c by choosing the maximum probability token at each sequence position. We
pass φϕ through a fully-connected layer to compute the vision network modulators ϕ.

To split φϕ and φc, we first transform φ embeddings into a sequence of max-probability tokens.
We extract φϕ from all sequence positions that immediately follow special token <MOD>, and we
extract φc from all remaining positions. The agent α predicts <MOD> and subsequent φϕ features
after each volume encoding and generation function argument. We project φϕ embeddings to ϕ
using a fully-connected layer with 32 output channels and SiLU activation.

A.2 PERSISTENT ENVIRONMENT

In environment Ω, we predefine a variable corresponding to each volume v. As the code ci is
executed, new variables are defined and retained in Ω, persisting across steps. To guide the next
instruction step, ci can include read operations, which extract the value of a variable in Ω and
embed it in a representation zi as feedback in the next state µi+1 = µi q φi q zi.

For each volume v passed through menc, we reduce the spatial dimensions of the deepest layer
output using a global max operator. We pass these pooled features through a fully-connected layer
to compute ε◦v ∈ Rd. When a read instruction is executed on a set of volume encodings E defined
in Ω, we concatenate each ε◦v ∈ E into the feedback embeddings z.

A.3 VOLUME ENCODER AND GENERATOR SUBNETWORKS

We implement menc and mgen as the respective down-sampling and up-sampling arms of a six-
level UNet-like model (Ronneberger et al., 2015). Each level consists of a 3D convolutional layer
followed by a latent feature ϕ mixing layer and stream interaction layer with b = 32, as defined
in Section 3.1. All layers use SiLU activations. The spatial outputs at each level are channel-
normalized with a group size of four, then max-pooled (menc) or trilinearly upsampled (mgen) by a
factor of two. Convolution kernels have size 33, with 32 output channels at the top resolution level
and 96 output channels at all other levels.

For all input volume streams, we populate E with spatial features output at each level in menc. We
use these latent features as skip-connections to corresponding level inputs in the generator mgen,
which predicts volumes through a convolutional layer with one output channel. Lastly, we apply the
sigmoid activation to generate binary segmentation maps. If multiple volumes from a single scan
session are passed as input to VoxelPrompt, we compute a merged, session-specific segmentation by
extracting the max values across outputs corresponding to each session.

A.4 OPTIMIZATION

We train VoxelPrompt using the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate
of 10−4, a batch size of one, and 10 gradient accumulation steps on an NVIDIA A100 GPU. We
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halve the learning rate after 105 steps with no improvement in validation accuracy, stopping training
after four sets of learning rate updates. We set the volume loss weight λ = 0.1.

B TRAINING DATA DETAILS

B.1 IMAGE PREPROCESSING AND AUGMENTATION

For each image volume, we normalize intensities within the range [0, 1], conform the data layout to
a right-anterior-superior (RAS) orientation, and crop the field of view to a 20 mm margin around the
cranial cavity. We co-register all images acquired from each subject using Hoffmann et al. (2024).

In training, we randomly sample up to 8 (or max available) images corresponding to a scan session.
We augment images by applying random affine transformations, spatial intensity distortions (bias
field simulations, spatial smoothing, k-space corruptions), exponential scaling, lateral anatomical
flipping, cropping, anatomical masking, and voxel resizing. We take advantage of our resolution-
agnostic vision network and randomly sparsify training data to reduce voxel throughput and signifi-
cantly reduce total train time. This random sparsification is performed by sampling slice separations
from the range [1, 6] mm or by cropping the field of view. We ensure that the target ROI, if applica-
ble, is not removed during this process. Volume sparsification is performed with 50% probability for
each sample or when total input voxels exceeds a preset threshold to prevent device memory errors.

B.2 ANATOMICAL DATASET DETAILS

In addition to the pathology datasets outlined in 3.2, we generate segmentations for whole-brain
anatomical structures on images from the FSM (Greve et al., 2021), OASIS (Marcus et al., 2007;
LaMontagne et al., 2019), Mind Brain Body (Babayan et al., 2019), IBC (Pinho et al., 2018), CER-
MEP (Mérida et al., 2021), and Forrest Gump (Hanke et al., 2014) cohorts. We select high-quality
acquisitions and thoroughly inspect and correct errors in the label maps. Additionally, we make use
of multiple image atlases with precomputed segmentations (Adil et al., 2021; Pauli et al., 2018).

B.3 ANATOMICAL STRUCTURES

We use segmentations of various anatomical classes, listed below. Bilateral brain structures are
defined by two distinct hemisphere-specific labels.

Global tissue classes include the brain, dura, skull cavity, cerebrum, cerebral white matter, cerebral
cortex, brainstem, cerebellum, ventricular system, and cerebral spinal fluid (CSF).

Brain sub-structure labels include the amygdala, nucleus accumbens, hippocampus, thalamus, cau-
date, putamen, dorsal striatum, globus pallidus (externus and internus), basal ganglia, hypothalamus,
fornix (body, crus, and column), mammillary body, septal nucleus, subthalamic nucleus, habenula,
ventral pallidum, extended amygdala, red nucleus, anterior and posterior commissures, pars com-
pacta, pars reticulata, parabrachial pigmented nucleus, ventral tegmental area, fimbria, septum pellu-
cidum, tectum, pineal gland, superior and inferior colliculus, cerebral peduncle, medullary pyramid,
medial lemniscus, cerebellar peduncle (superior, middle, inferior), cerebellar gray matter, and cere-
bellar white matter.

Ventricular sub-structure labels include the lateral ventricle, inferior lateral ventricle, posterior lat-
eral ventricle, anterior lateral ventricle, atrium, third ventricle, fourth ventricle, interventricular fora-
men, and cerebral aqueduct.

Cortical sub-region labels include the frontal lobe, parietal lobe, temporal lobe, occipital lobe, cin-
gulate cortex, insular cortex, anterior cingulate cortex, caudal anterior cingulate cortex, rostral an-
terior cingulate cortex, posterior cingulate cortex, isthmus cingulate cortex, frontal pole, middle
frontal gyrus, caudal middle frontal gyrus, rostral middle frontal gyrus, superior frontal gyrus, infe-
rior frontal gyrus, pars opercularis, pars orbitalis, pars triangularis, lateral orbitofrontal cortex, me-
dial orbitofrontal cortex, precentral gyrus, paracentral lobule, inferior parietal lobule, superior pari-
etal lobule, supramarginal gyrus, precuneus, postcentral gyrus, entorhinal cortex, fusiform gyrus,
parahippocampal gyrus, temporal pole, inferior temporal gyrus, middle temporal gyrus, superior
temporal gyrus, transverse temporal gyrus, cuneus, lingual gyrus, and pericalcarine cortex.
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generate noise attenuate signal binary threshold obtain lesion
segmentation mask

in-paint lesion on scan

Figure 5: Schematic of the lesion synthesis procedure. A lesion shape is first generated by attenuat-
ing and thresholding Brownian noise. The resulting segmentation map is resampled into the target
image space, with size and position determined based on anatomical priors. The lesion is in-painted
by pasting the tissue mask into the image with procedurally-generated texture and mean signal in-
tensity based on randomly selected relative tissue characteristics.

B.4 RADIOPAEDIA DATA

We download and annotate 101 patient cases from Radiopaedia, a radiology reference at
https://radiopaedia.org. Each case includes text-based notes and scans in the form of 2D image
slices. We reconstruct volumetric data by stacking these slices and estimating an affine matrix to
map voxel coordinates in world space. We compute this mapping by registering the image to an
average template.

B.5 LESION SYNTHESIS

To extend the range of pathological features observed during training, we synthesize brain lesions
with variable characteristics using a model-based domain randomization technique (Gopinath et al.,
2024). Images spanning diverse acquisition types from 26 subjects in the OASIS, Mind Brain Body,
and CERMEP datasets are paired with whole-brain anatomical segmentation maps as the basis for
this process.

For each synthetic lesion, we first sample parameters describing anatomical location, dimensions,
intensity relative to surrounding tissue, and texture. As illustrated in Figure 5, volumetric multi-
scale Brownian noise is generated with a signal fall-off matched to the sampled lesion dimensions,
then thresholded to produce lobulated structures. These shapes define lesion boundaries, which
are further constrained by anatomical maps. For example, parenchymal lesions are restricted to
white and gray matter, while ventricular lesions are restricted to cerebrospinal fluid spaces. Lesion
interiors are inpainted into the native image using randomly generated textures derived from Perlin
noise. The mean intensity of the inpainted lesion is determined by the underlying healthy image
signal and sampled relative intensity shift.

We also synthesize multiple lesions per subject with varying properties, providing negative examples
for VoxelPrompt to learn to differentiate abnormalities based on descriptive features. In addition, we
simulate heterogeneous lesions by superimposing secondary Brownian noise–derived masks within
an existing lesion, producing intra-lesional components or heterogeneous signal profiles.

C EXPERIMENTAL DETAILS AND DATA

C.1 SEGMENTATION EVALUATION DATA

In the table below, we summarize the number of unique images from held-out subjects used when
comparing VoxelPrompt segmentation accuracy to SynthSeg (Billot et al., 2023) and individual spe-
cialist models. These evaluations use the same set of anatomical test images (Appendix B.2), so we
group them together below.
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Figure 6: Per-subject accuracy for zero-shot lesion segmentation. Subject indices are sorted along
the x-axis in ascending order of VoxelPrompt prediction accuracy. We find that VoxelPrompt consis-
tently achieves high-quality segmentation across all evaluation datasets and lesion types considered.

Table 1: Numbers of held-out test images and subjects corresponding to the whole brain anatomical
segmentation experiment in Section 4.1 and the multi-task training ablation in Section 4.2.

Segmentation Target Images Subjects

infarct 206 206
glioma 1376 344
edema 1386 347
cyst 24 11
papilloma 16 6
meningioma 21 8
white matter hyperintensities 40 20
anatomical structures 108 40

C.2 ZERO-SHOT LESION SEGMENTATION BASELINES

Baseline settings. For the pathology segmentation experiments, we evaluate baseline performance
across diverse input configurations to ensure fairness and avoid bias. For both BiomedParse v2 (Zhao
et al., 2025a) and SAT (Zhao et al., 2025b), we explore a range of prompting strategies on each
dataset, following the formats recommended in the original repositories or used during their train-
ing. We test multiple levels of pathology classification terminology and adopt the phrasing that
yields the best performance. BiomedParse v2 does not specify a preferred anatomical orientation,
so we evaluate across all possible orientations and report the best-performing one. We also find that
BiomedParse v2 does not benefit from resampling inputs to isotropic resolution. The MoME (Zhang
et al., 2024) baseline requires skull-stripping and affine alignment to the MNI template prior to pre-
diction. We follow this preprocessing and report MoME’s results in the original coordinate system.

The dataset-specific prompts used as input to language-conditioned methods are described below.

VoxelPrompt BiomedParse V2 SAT

BraTS menin. segment the hyperintense mass MRI imaging of a brain tumor meningioma
EPISURG segment the hypointense lesion MRI imaging of a brain lesion stroke
BHSD segment the hyperdense lesions CT imaging of brain lesions intracranial hemorrhage
PediMS segment hyperintensities MRI imaging of lesions white matter hyperintensities

Additional results. In Figure 6, we show per-subject performance plots for all methods on zero-
shot lesion segmentation. VoxelPrompt consistently outperforms the baseline foundation models for
brain pathology segmentation.

C.3 SCAN GEOMETRY SAMPLING

To evaluate the efficiency improvements provided by the native-resolution vision network, we sam-
ple test images with spatial geometries drawn from distributions representative of clinical MR and
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CT brain acquisitions. Image dimensions are sampled uniformly around a 155×190×165 mm field
of view, with a max deviation of ±15 mm in each dimension. This range is derived from the 10th

and 90th percentile values of image sizes in our preprocessed datasets.

To reflect real-world voxel resolutions, we consider imaging modalities most frequently collected
in a standard clinical brain imaging session. For each acquisition type, we define uniform sampling
ranges for in-plane resolution and slice separation, based on standard protocol guidelines and em-
pirical resolution distributions observed in our dataset. Voxel spacings are clamped to a minimum of
0.8 mm. During each experimental sample, we randomly select a field of view, acquisition type, and
resolution from these distributions, and randomly populate the volumes with Gaussian noise. This
distribution, outlined below, is not exhaustive, but is designed to provide a representative coverage
of common acquisitions sufficient to evaluate the benefits of native-resolution processing.

in-plane spacing (mm) slice separation (mm)

T1-weighted (isotropic) 0.8 – 1.2 iso.
T2-weighted 0.8 – 1.0 3.0 – 5.0
FLAIR 0.8 – 1.0 3.0 – 5.0
diffusion-weighted (DWI) 1.5 – 2.5 2.0 – 3.5
gradient-echo (GRE) 0.8 – 1.2 4.0 – 6.0
perfusion MRI 1.5 – 2.5 4.0 – 6.0
susceptibility-weighted (SWI) 0.8 – 1.0 1.5 – 3.0
CT (isotropic) 0.8 – 1.0 iso.
CT (thick slice) 0.8 – 1.0 3.0 – 6.0

C.4 IMAGE SYNTHESIS FOR EVALUATING STREAM INTERACTION

Brain image synthesis techniques are used to train neuroimaging models that are robust to acquisition
variability and anatomical differences (Gopinath et al., 2024). These approaches employ domain
randomization methods (Tobin et al., 2017), in which whole-brain anatomical segmentations are
mapped to randomized tissue intensities, warped by spatial transformations, and augmented with
simulated artifacts. The resulting synthetic images extend beyond the realistic range of clinical
scans, enabling models to generalize across diverse real-world data and tasks (Dey et al., 2024).

We adopt this strategy as a controlled framework for evaluating VoxelPrompt’s ability to integrate
complementary information across arbitrary numbers of input volumes. By generating multiple syn-
thetic images from a single anatomical label map, we test whether segmentation accuracy improves
as additional inputs are provided.

For stream-interaction evaluation, we employ a standard image synthesis protocol widely used in
brain imaging (Gopinath et al., 2024). Briefly, for each evaluation sample, we sample a whole-brain
anatomical segmentation map from a set of OASIS subjects. To generate an individual image from
this segmentation, each label is assigned an intensity distribution defined by Gaussian parameters
sampled uniformly, following a classical Bayesian segmentation formulation. Voxel labels are then
recoded into grayscale values drawn from their respective label distributions, producing synthetic
images. Finally, we apply random artifact simulations, including spatial blurring, additive noise,
and bias-field distortion.

To generate corrupted images, we synthesize random label maps from multi-scale Brownian noise.
Between 10 and 20 noise maps are generated, and voxels are assigned to the index of the maximum-
valued map. This synthetic label map is then converted to an image using the same label-to-intensity
procedure described above.

C.5 STREAM INTERACTION VARIANTS

We compare our attention-based stream interaction module with two reduction-based variants com-
monly used in multi-input medical image analysis (Butoi et al., 2023). In these variants, features are
aggregated across input streams by mean or max pooling along the stream dimension. The result-
ing global feature representation is then concatenated channel-wise with the original stream-specific
features. This combined feature map is passed through a linear projection layer whose output di-
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mensionality matches that of the block input, ensuring compatibility with the downstream network.
We test both mean and max-reduction as alternative aggregation operations to our proposed attention
mechanism.

To compare interaction mechanisms, we implement vision models matching the VoxelPrompt ar-
chitecture but without language-conditioning blocks, varying only the stream interaction module.
Models are trained on synthetic data (Appendix C.4) using multi-class Soft Dice loss to segment
35 anatomical brain structures. At each training step, between one and three images corresponding
to a single segmentation target are sampled, with a 10% probability of including a corrupted image
(described in Appendix C.4).

For evaluation, we generate 500 synthetic image sets, each containing three images derived from
a held-out test set of 50 subjects and a predefined subset of corrupted images. We evaluate model
performance by varying the number of images provided as input from each set and measuring Dice
overlap between predicted and reference segmentations.

Table 2: On uncorrupted input image sets, attention- and reduction-based stream interaction meth-
ods result in similar model segmentation accuracy (Dice), which improves for all methods as image
inputs are added for a single forward pass.

Method 1 image 2 images 3 images

attention 83.7± 2.8 85.8± 1.8 86.9± 1.4
max-reduction 83.5± 2.6 85.8± 1.8 87.1± 1.5
mean-reduction 83.0± 2.7 85.7± 1.8 86.7± 1.6

D PATHOLOGY CHARACTERIZATION EXPERIMENT

We evaluate the ability of VoxelPrompt to produce a natural language characterization of image
features. We focus on five pathology-based visual question-answering tasks (also used during train-
ing). These involve classifying lesions based on (1) signal intensity, (2) broad cerebral location, (3)
stroke-affected vascular territory, (4) diffusion restriction, and (5) post-contrast enhancement.

Data. For each of these tasks, we curate a subset of held-out subjects with relevant features, while
ensuring equal representation of possible classification categories in each subset. In total, the evalu-
ation set consists of 102 cases, with per-task breakdowns detailed below.

Classification Task Images Subjects

characterize lesion signal intensity 26 26
identify lesion cerebral location 112 30
identify infarct vascular territory 16 12
detect diffusion restriction 28 14
detect post-contrast enhancement 40 20

average across
subtasks
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Figure 7: Accuracy of pathology characterization using natural language for five separate classifi-
cation subtasks. Average subtask accuracy is shown on the left. VoxelPrompt (black) parallels the
performance of individually-trained, single-task classifiers (purple) and a fine-tuned RadFM model
(yellow) – a state-of-the-art method for 3D visual question-answering.
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Evaluation. During evaluation, we consider a prediction as correct if the output natural language
response exactly matches the expected characterization. Using a paired t-test, we compare the Vox-
elPrompt per-task classification accuracy to that of multiple baselines.

Baselines. We compare VoxelPrompt to a set of classifier benchmarks, each trained for one of the
five pathology characterization tasks in T . As opposed to using language, the single-task benchmark
models directly predict label probabilities for a fixed set of task-specific characterizations. We im-
plement these models using the architecture of menc, with ϕ mixing layers replaced. We reduce the
spatial dimensions of the deepest encoder layer output using a global max operator, then compute the
maximum value over all input volume streams. To compute classification probabilities for n possible
descriptions, we pass the stream-pooled features to a fully-connected layer with n output channels
and softmax activation. During benchmark optimization, we use the categorical cross-entropy loss
on these predicted probabilities.

We also compare VoxelPrompt to RadFM (Wu et al., 2025), a publicly released, state-of-the-art
architecture for medical visual question answering that can process multiple 3D images simultane-
ously. In our preliminary experiments, we find that the pretrained RadFM cannot generalize to the
neuroimaging tasks used in this experiment. Therefore, we fine-tune RadFM on our subset of pathol-
ogy characterization tasks, using the training code released with their pretrained model weights. To
fit the optimization within 80 GB of GPU memory, we keep only the first eight hidden transformer
layers of the language model and do not modify any other model components. As required by the vi-
sion transformer, we resize all input volume spatial dimensions to the nearest multiple of 32×32×4.
During fine-tuning, we use only the expected language response (without code) as the target text.

Results. Figure 7 shows that VoxelPrompt achieves an average classification accuracy of 89.0 ±
3.6% over all tasks, matching the performance of the single-task benchmarks (89.3 ± 4.2%) as
well as the fine-tuned RadFM model (87.1 ± 7.9%). These results demonstrate that VoxelPrompt
can achieve language-based image characterization with comparable performance to specialized
classification and medical vision-language architectures, while also able to perform the wide variety
of tasks described in the main experiments.
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