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Abstract

We present a method for fast biomedical image atlas construction using neural
fields. Atlases are key to biomedical image analysis tasks, yet conventional and
deep network estimation methods remain time-intensive. In this preliminary work,
we frame subject-specific atlas building as learning a neural field of deformable
spatiotemporal observations. We apply our method to learning subject-specific
atlases and motion stabilization of dynamic BOLD MRI time series of fetuses
in utero. Our method yields high-quality atlases of fetal BOLD time-series with
∼5-7× faster convergence compared to existing work. While our method slightly
underperforms well-tuned baselines in terms of anatomical overlap, it estimates
templates significantly faster, thus enabling rapid processing and stabilization of
large databases of 4D dynamic MRI acquisitions. Code is available at https:
//github.com/Kidrauh/neural-atlasing.

1 Introduction

Given biomedical image observations, constructing image atlases enables morphometric analyses and
registration to a common coordinate system. Current conventional [6, 14, 16, 24, 26, 27] and deep
learning methods [9–11, 31, 32] for atlas building yield high-quality atlases with accurate registration
at the cost of significant computation time. These computational costs compound further when given
subject-specific image time-series (e.g., longitudinal repeats) where a new atlas must be constructed
for each subject to enable motion stabilization and standardized analyses.

In the context of fetal image analysis, in-utero BOLD MRI time series can track changes in fetal
and placental oxygenation under induced maternal hyperoxia to identify dysfunction and monitor
fetal and maternal well-being [2, 15, 25, 29]. However, the inter-timepoint motion caused by fetal
movement and maternal breathing necessitates nonlinear registration of the time series to a common
coordinate system for each individual subject to stabilize motion prior to any analysis. To that end,
this work presents a method for fast subject-specific spatiotemporal atlasing.

We formulate atlas estimation as the learning of compactly-parameterized dynamic neural fields [20,
21, 23, 28] to represent both the atlas and image-to-atlas deformations. Using our proposed neural
representation and training strategy, we rapidly construct high-fidelity subject-specific atlases and
stabilize the motion present in BOLD MR images of fetuses in utero to enable improved analyses of
key BOLD time series-based fetal and maternal biomarkers [29].
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Figure 1: Architecture. Our method constructs neural fields for volume registration and intensity
estimation, which warp observations to an atlas space and learn the atlas parameters, respectively.

Table 1: Quantitative results of baseline comparisons (top) and ablations (bottom) studying
registration performance (via local normalized cross-correlation and weighted dice), deformation
qualities (via deformation magnitude, avg. Jacobian determinant, and folding ratio), and runtimes.

LNCC (↑) Wt. Dice (↑) ∥u(x)∥2 (↓) |Jφ| % folds (↓) Runtime (↓)

Unaligned 0.392(0.073) 0.80(0.05) - - - -
SyGN [7] 0.528(0.075) 0.91(0.02) 0.0227(0.0035) 1.000(0.000) 0 12hrs / 96-core CPU

AtlasMorph [10] 0.531(0.079) 0.90(0.02) 0.0083(0.0014) 1.004(0.003) 0 16hrs / A6000 GPU
Ours 0.579(0.081) 0.88(0.02) 0.0183(0.0067) 1.004(0.013) 0.01(0.01) 2.2hrs / A6000 GPU

(- SVF) 0.503(0.081) 0.85(0.04) 0.0096(0.0021) 1.006(0.010) 0.04(0.02) 1.1hrs / A6000 GPU
(- Divergence) 0.579(0.078) 0.87(0.02) 0.0200(0.0063) 1.013(0.012) 0.06(0.04) 1.5hrs / A6000 GPU

(- Intensity field) 0.578(0.083) 0.88(0.02) 0.0209(0.0086) 1.000(0.018) 0.01(0.01) 2.2hrs / A6000 GPU

2 Methods

Learning Neural Fields. Fig. 1 presents our method consisting of networks for image-to-atlas
deformation and atlas estimation. We use three neural fields, each parameterized as a multi-resolution
hash encoding followed by a small MLP [19] for efficient processing. We further use stationary
velocity fields (SVF) to ensure diffeomorphic deformations [3, 4, 17]. The atlas is produced by an
encoder-decoder where the encoder consists of time-invariant (static) and time-variant (intensity)
functions that allow small changes in atlas appearance to account for subtle topological changes.

Given spatial x = (x, y, z) and temporal t ∈ T coordinates, the registration field ΨR : R4 7→ R3

computes velocities v(x) which integrate to yield a diffeomorphic displacement field u(x) between
an image at time t and the atlas, such that the deformation between them is φ(x) = u(x) + x. On
warping the image coordinates into the atlas space, we query φ(x) from the static field ΨS : R3 7→ Rn

to get the feature vector vstatic ∈ Rn encoding time-invariant latent atlas features. We then query
(φ(x), t) from an intensity field ΨI : R4 7→ Rn that yields vintensity ∈ Rn encoding the latent
intensity differences between φ(x) in the atlas and x in the original image. An MLP ΨD : Rn 7→ R
then decodes the fused latent features and yields the estimated intensity Î(x, t) of the original image.

Losses. We use the L1 reconstruction objective Lrec =
1
|Ω|

∑
x∈Ω |I(x, t)− Î(x, t)| where Ω is the

spatial coordinates and I and Î are ground truth and estimated intensities of the image, respectively.
To encourage smooth, locally-rigid, and central deformations, we develop the regularizer Ldef =
λ1

1
|Ω|

∑
x∈Ω∥u(x)∥2 + λ2Ldiv + λ3∥ū(x)∥22, where ū(x) is the moving average of displacement

vectors [10] and Ldiv = 1
|Ω|

∑
x∈Ω |div(u(x))|2 is the divergence loss [30] that encourages locally-

rigid deformations which are essential to properly model fetal motion. To reduce folds in the
computed deformations, we use the negative Jacobian loss Ljac [18], which reduces the number of
negative elements in the determinant of the Jacobian of the deformation. For intensity estimation,
we use L1 regularization Lint on vintensity to limit temporal appearance changes, and use total
variation regularization Ltv = tv(vstatic) + tv(vintensity) on vstatic and vintensity to encourage
piecewise-constant and sharp-edged atlases both spatially and temporally. Our overall objective is
L(F ) = Lrec + Ldef + λjacLjac + λintLint + λtvLtv where λ1 = 10−3, λ2 = 5 × 10−4, λ3 =
0.1, λjac = 1, λint = 0.05, and λtv = 0.1, chosen via grid search on two validation subjects.
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Figure 2: Given an arbitrarily chosen subject, we illustrate the mid-timepoint of the time-series, the
temporal linear average, and fetal atlases produced by SyGN [7], AtlasMorph [10], and our method.
Atlasmorph creates undesirable checkerboard artifacts (indicated by red arrows).

Atlas Inference. To construct the final atlas (the single time-invariant template) representing the
entire time-series, we directly query (x, t) from the trained atlas encoder-decoder network (Fig. 1
right, intensity estimation). We first calculate the static feature vector vstatic and the intensity feature
vectors vintensity at each time step t and then decode vstatic +

1
T

∑T
t=1 vintensity using ΨD.

3 Experiments

Data and Baselines. We use 11 dynamic BOLD MRI time-series of in utero fetal subjects (2
for tuning hyperparameters and modeling decisions and 9 for held-out testing) with a time-series
length of 78 to 146 time points per subject [1]. Due to fetal motion and maternal breathing, there
is a need for the registration of all images to a common unbiased subject-specific representation.
Each image is resampled to 112× 112× 80 at 3mm3 isotropic resolution. As we use an intensity-
based reconstruction loss, we use adaptive histogram equalization [22] for inputs to our model
to balance contributions from bright and dark BOLD regions such as the amniotic fluid and fetal
body, respectively. We use SyGN [7] and AtlasMorph [10] as representative conventional and deep
network baselines, with local normalized cross-correlation (LNCC) [5] as a registration loss which is
locally-adaptive and intensity scale-invariant by design. AtlasMorph and our method are trained on a
single RTX A6000 GPU and SyGN is optimized on a server CPU using 96 hyperthreaded cores.

Evaluation. Atlas building evaluation is subtle and involves trade-offs between registration accuracy,
deformation quality, and runtime [11]. To measure performance, we follow [13] and randomly select
50 MRI pairs for each subject and compose image-to-atlas and atlas-to-image warps to calculate
LNCC and multi-region Dice coefficients [12]. Our segmentation labels correspond to the placenta,
amniotic fluid, fetal body, fetal brain, and fetal eyes and are generated by an in-house segmentation
network. To assess deformation quality, we calculate the average displacement L2 norm between the
atlas and images with a lower value indicating improved template centrality, the mean determinant of
the Jacobian matrix Jφ(p) w.r.t. the input voxel p, and the ratio of deformation folds.

Results. Table 1 reports LNCC and the weighted average Dice scores and deformation statistics
comparisons between the baselines and our model. All methods produce invertible deformations.
The proposed model achieves best-in-class LNCC but lags behind slightly in terms of Dice score (i.e.,
anatomical overlap). In terms of runtime, our proposed model converges 5.5− 7.4× faster than base-
lines yielding high-fidelity templates (see Fig. 2) with smooth and invertible deformations. However,
if the tuned baselines are optimized to convergence, they currently yield improved anatomical overlap.
Ablations removing the SVF formulation, the divergence loss, and ΨI all worsen performance.
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4 Conclusions and Future Directions

We demonstrate that dynamic neural fields learn atlases of 4D fetal BOLD MRI time-series signifi-
cantly faster than current methods. These speed gains are especially relevant to subject-specific atlas
building of large collections of subjects imaged using 4D dynamic MRI. Currently, our preliminary
work finds that well-tuned baselines optimized for longer still achieve better registration overlap in
terms of Dice. This performance gap points to several future directions: (1) Fetal BOLD MRI time
series are temporally sampled at only ∼0.28 frames per second (FPS) as compared to conventional
video (24+ FPS) for which existing work on dynamic neural fields was developed. This gives rise
to large, erratic motion between consecutive timepoints, and may require modification to existing
positional encoding functions which assume temporal smoothness. (2) High-performing mono-modal
biomedical image registration frameworks typically use LNCC [8] as a registration loss. However,
due to the scale and shift-invariant formulation of LNCC, neural regression networks trained with
LNCC require significant regularization to guide them towards non-degenerate solutions, which we
find can introduce significant artifacts in the estimated atlas. Future work may seek to mitigate this
tradeoff by constraining the optimization space of the network or using data-driven priors.
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