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Abstract. Fixation is essential for preserving cellular morphology in
biomedical research. However, it may also affect spectra captured in
multispectral fluorescence microscopy, impacting molecular interpreta-
tions. To investigate fixation effects on tissue, multispectral fluorescence
microscopy images of pairs of samples with and without fixation are
captured. Each pixel might exhibit overlapping spectra, creating a blind
source separation problem approachable with linear unmixing. With mul-
tiple excitation wavelengths, unmixing is intuitively extended to tensor
factorizations. Yet these approaches are limited by nonlinear effects like
attenuation. Further, light exposure during image acquisition introduces
subtle Brownian motion between image channels of non-fixed tissue. Fi-
nally, hypothesis testing for spectral differences due to fixation is non-
trivial as retrieved spectra are paired sequential samples. To these ends,
we present three contributions, (1) a novel robust non-negative tensor
factorization using the β-divergence and L2,1-norm, which decomposes
the data into a low-rank multilinear and group-sparse non-multilinear
tensor without making any explicit nonlinear modeling choices or as-
sumptions on noise statistics; (2) a diffeomorphic atlas-based strategy
for motion correction; (3) a non-parametric hypothesis testing frame-
work for paired sequential data using functional principal component
analysis. PyTorch code for robust non-negative tensor factorization is
available at https://github.com/neel-dey/robustNTF.

1 Introduction

Imaging spectroscopy is a ubiquitous tool to investigate the chemical nature of
biological samples. Each pixel contains an entire spectrum in a desired modality
(e.g., reflectance) whose multivariate nature allows for rich applications in image
analysis such as segmentation and unmixing. However, prior to any form of
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imaging, fixation is performed to protect tissue from postmortem decay and
improve mechanical strength. Doing so allows for the preparation of thin and
storable tissue sections, a universal requirement. However, as fixation changes
the chemistry of a sample to prevent decay, it may further alter its spectra and
confound its interpretation. In image analysis applications where the spectra are
of interest (e.g., detecting malignancy in surgical biopsies), it is imperative to
verify whether fixation changes their shape characteristics [5].

Towards understanding this effect for applications in retinal biology and
pathology, we perform a self-controlled experiment. Human eyes were obtained
in pairs from deceased donors, and tissue sections from corresponding locations
in both eyes were imaged. Sections from the right and left eyes were fixed and
not fixed, respectively. Imaging was performed with multispectral fluorescence
microscopy with multiple light sources (excitation wavelengths), allowing for the
high-dimensional analysis of spectral differences in these paired samples. How-
ever, several image analysis challenges arise from this experimental design.

First, compound co-localization leads to pixels containing mixed spectra. To
separate constituent spectra and retrieve their spatial distributions in the image,
non-negative matrix and tensor factorizations are used when there are one or
more light sources, respectively [2, 8]. Non-negative data analysis is required as
physical spectra cannot be negative. However, these models are deficient when
there are nonlinear effects present like absorption and scattering within tissue.
A nonlinear matrix/tensor factorization was proposed in [6] which incorporated
attenuation but required reference spectra, precluding several applications.

Second, without fixation, tissue heating during image acquisition causes sub-
tle Brownian motion of organelles between image channels. Thus, the observed
spectrum at a pixel may be erroneous and can be a source of noise to analysis.
Third, our measurements are paired sequential observations. This precludes the
use of standard paired hypothesis tests to test for differences caused by fixation
as they assume normality and ignore the sequential nature of spectral curves.

Therefore, our image and statistical analysis contributions are threefold.
First, we propose a novel robust non-negative tensor factorization (rNTF) that
decomposes the tensor of multi-excitation multispectral images into a low-rank
multilinear tensor and an additional group-sparse tensor which contains the non-
linearities. Existing methods for tensor factorization often make strong assump-
tions on noise statistics, whereas fluorescence microscopy is affected by a mixture
of Poisson and Gaussian noise [12]. Therefore, we minimize the β-divergence, an
information geometric metric which allows us to interpolate between noise statis-
tics assumptions [3]. Group-sparsity is enforced on the resulting nonlinear tensor
via L2,1-norm regularization. We iteratively impute missing values common in
fluorescence measurements via expectation maximization [11]. The algorithm
has element-wise updates and is thus executed on GPUs for fast execution.

Second, we propose a granular motion correction strategy in fluorescence
microscopy using unbiased diffeomorphic atlas building [7], where all images
in the stack are nonlinearly registered to an estimated template, minimizing
subtle intra-stack motion without tearing the image due to the diffeomorphic
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constraint. Third, inspired by the functional testing of fractional anisotropy
along axonal tracts between groups in diffusion tensor imaging [9], we propose
a framework for paired hypothesis testing of spectra using functional principal
component analysis [10] and the Wilcoxon signed-rank test.

2 Methods

Preliminaries We use the notation of x for a vector, X for a matrix, and X
for a tensor. The tensor columns are mode-1 fibers, rows are mode-2 fibers and
so on. Mode-i matricization refers to taking the mode-i fibers of a tensor and
arranging them as columns of a matrix. The rank-P factorization of a tensor
L ∈ RI×J×K can be formulated as the sum of P rank-one tensors, such that
L ≈

∑P
i=1 ai ◦ bi ◦ ci where ai ∈ RI , bi ∈ RJ , and ci ∈ RK . Factor matrices

A, B and C are generated from L by concatenating vectors from the rank-one
components, such that A = [a1, . . . ,aP ], B = [b1, . . . ,bP ], and C = [c1, . . . , cP ].

Robust Non-negative Tensor Factorization Robust tensor factorizations
have a rich recent history in machine learning and computer vision [13]. Given a
tensor M corrupted with gross outliers, it is possible to recover a low rank and
sparse combination of tensors (L and S, respectively) such thatM≈ L+S. Re-
cently, there has been interest in replacing the squared Euclidean distance error
term with other metrics and divergences which may accommodate other forms
of data and noise statistics [4]. Further, there is interest in detecting structured
outliers (common in medical imaging), motivating the replacement of L1-norm
regularization with the L2,1-norm which induces group sparsity [13].

Consider a rank-P robust tensor factorization of M≈
∑P
i=1 ai ◦ bi ◦ ci + S,

where A,B,C,S ≥ 0. Block coordinate descent using various tensor matri-
cizations is the workhorse algorithm for calculating tensor factorizations and is
adopted here by iteratively fixing three out of four quantities A,B,C, S and solv-
ing for the remaining one. Using the formulation of factor matrices, the factor-
ization can be written as, M(1) ≈ A(C�B)

T
+S(1), M(2) ≈ B(C�A)

T
+S(2)

and M(3) ≈ C(B�A)
T

+ S(3) where M(i) and S(i) are the mode-i matricized
representation of the tensorsM and S respectively, and � is the matrix Khatri-
Rao product. Given the above considerations, we propose to solve the following
model alternating between all matricizations, where k is the matricization mode,

min
A,B,C,S

E(A,B,C,S) = Dβ(M(k),L(k) + S(k)) + λ‖S(k)‖2,1,

such that A,B,C,S ≥ 0, where Dβ(·, ·) is the beta divergence, and ‖ · ‖2,1 is the

L2,1-norm, such that ‖S(k)‖2,1 =
∑G
i=1 ‖si‖2 where S(k) has G columns. The β-

divergence is an information-geometric measure of fit parameterized by a scalar
β, which takes the squared Euclidean, Kullback-Leibler and Itakura-Saito di-
vergences (corresponding to Gaussian, Poisson or Gamma noise assumptions) as
limiting cases corresponding to β = 2, 1, 0 and all interpolating cases in between.
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Consider the matricization M(1) ≈ A(C�B)
T

+S(1) to solve for A and S(1).
As derived in [3] for robust NMF, fixing B,C and S allows us to multiplicatively
update A such that A,B,C, S ≥ 0 in a majorization-minimization framework.
Using a convex-concave decomposition of the β-divergence, majorizing the con-
vex and concave parts by the Jensen and Tangent inequalities respectively and
minimizing in closed form w.r.t. to A, we get,

A→ A ∗
( (M(1) ∗ M̂

.(β−2)
(1) )(C�B)

M̂
.(β−1)
(1) (C�B)

)
,

where the numerator and denominator undergo element-wise division, M̂(1) de-

notes the mode-1 matricization of the current low-rank approximation M̂, ‘∗’
denotes the element-wise (Hadamard) product, and the ‘.’ operator in the expo-
nents indicates element-wise power. To estimate S(1), given fixed A,B,C and
an L2,1 penalty term on S(1), a similar optimization yields the following update,

S(1) → S(1) ∗
( M(1) ∗ M̂

.(β−2)
(1)

M̂
.(β−1)
(1) + λS(1)diag(‖s1‖2, . . . , ‖sG‖2)−1

)
,

where λ is the regularization weight on the L2,1-norm and G is the number of
columns in S(1). The S(1)diag(‖s1‖2, . . . , ‖sG‖2)−1 term in the denominator is
the columnwise normalized matrix S(1) which we compute by looping through
the columns instead of direct evaluation for numerical stability. For brevity, we
analogously update B, S(2) and C, S(3), as shown in the supplementary material.

If the input data tensor M has missing entries (as in our application),
we can iteratively estimate the missing values by single imputation [11]. This
involves generating an indicator tensor W with wijk = 0 if mijk is missing
and vice-versa. During the iterations, we impute the missing entries of M via
M←W ∗M+ (1−W) ∗M̂ where M̂ is the current estimate of the reconstruc-
tion. As W is binary, the imputation reduces to expectation maximization [11].

Atlas-based Motion Correction Subtle Brownian motion of organelles
across image channels in a multispectral image must be corrected such that the
organelles are stationary across the spectral sequence. Particle tracking methods
can track individual particles across multiple images and obtain displacement
fields, yet they are inapplicable for our registration-based correction as the fields
need not be invertible (thus tearing the image) and assume constant intensity or
require pre-segmentation. Further, a spectral channel must be arbitrarily chosen
as the reference image towards registration, thus inducing user bias.

We propose to use a large deformation diffeomorphic metric mapping-based
atlas building framework towards this correction. Unbiased atlas building [7] is
used to generate a deformable template image by minimizing its distance to
every channel in the spectral image. Symmetric diffeomorphic registrations and
atlas estimation are performed using cross-correlation as a metric [1]. This ap-
proach has the following advantages: (1) the diffeomorphic constraint ensures
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Fig. 1. rNTF validation. A bead with two concentric fluorescent chemicals with sim-
ilar spectra imaged in a confocal microscope with two excitation wavelengths. Bovine
hemoglobin was added to simulate attenuation in tissue imaging, thus creating non-
linearities. As shown in B, the spectrum of the shell recovered by NTF is significantly
distorted, and NTF is unable to spatially resolve the two substances due to the extrinsi-
cally added attenuation. rNTF recovers spectra which are undistorted, while also being
able to spatially separate the two fluorophores on the bead as shown in the abundances
images.

invertible deformation fields and prevents tearing, (2) this does not require con-
stant intensity due to the use of cross-correlation as a matching metric and (3)
it removes user bias in picking a registration target.

Paired Hypothesis Testing for Spectra The differences in retrieved spec-
tra from each fixed/unfixed pair are difficult to interpret and necessitate a hy-
pothesis testing framework. Here, our features are the spectral channels. Paired
multivariate tests should not be directly used as they do not account for the
sequential nature of these features and the number of features are comparable
to the sample size. We start by noticing that spectra are discrete realizations of
continuous curves (i.e. functional data). Inspired by [9], we use functional PCA
to reduce dimensionality while accounting for the sequential nature of features
and further extend their work to the case of paired samples.

Once we retrieve constituent spectra from all the tissue sections, correspond-
ing length-m spectra from n tissue sections (i.e. the same spectral component
in each donor identified by spatial localization) are stacked into a matrix of size
m×n. Applying functional PCA with rank-k, we get k functional eigenbases and
their coefficients ξ. We wish to test whether the difference in distribution of these
coefficients for paired samples (fixed/unfixed) are significantly different. We state
our k null hypotheses as Hk

0 : [ξ1j − ξ2j ]kj=1 comes from a symmetric distribution
with zero median, where the coefficient superscript indicates group membership.
Rejecting this null hypothesis implies significant differences between fixed and
unfixed pairs. All k hypotheses are tested with the Wilcoxon signed-rank test
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Still Frame
Mean Projection

(before correction)

Mean Projection

(after correction)
a) b) c)

Zoom

Insets
d)

Fig. 2. Toy Example for Motion Correction. A grid of circles with random in-
tensity changes and conditional deformations and are used to simulate the changing
intensities and motion over image channels, respectively. With Brownian motion, the
framework corrects the motion with some minor artefacts. a) A still frame from a
sequence of images of circles on a randomly deforming grid. b) Mean projection of
the raw image sequence. Note the blurry edges due to movement. c) Mean projection
of the image sequence after correction. The circles are not returned to their initial
positions due to our assumption of zero-mean motion. However, they are stationary
which is sufficient for our application. d) Insets showing a sample circle with (bottom)
and without (top) motion correction. Readers are encouraged to view supplementary
material for videos of both synthetic and real examples.

which is a non-parametric test for paired samples. As there are k hypotheses, we
apply the Bonferroni multiple comparisons correction. If we apply rank-r rNTF
(i.e., r spectra from each section), we have r such matrices and repeat this for
each matrix.

3 Experiments and Results

Experimental Dataset 24 pairs of tissue sections are used here. Tissue sec-
tions from corresponding locations in human donors from both eyes (one fixed,
one not) were imaged with a multispectral fluorescence microscope, capturing
multiple channels per image. Four excitation light sources were used, thus ac-
quiring four multi-channel images per tissue section. After atlas-based motion
correction, the images are preprocessed similarly to [2]. Each channel in an im-
age is vectorized and treated as a row of a matrix. Repeating this across the
four images and stacking the matrices, we get a 3D tensor (channels × pixels ×
light sources). This is illustrated in fig. 3A, B, C, D and E. The multispectral
images each have a different number of channels and therefore, when the images
are stacked into a tensor, unavailable channels are treated as missing data.

Implementation Details The four multispectral images are first affinely
aligned. To build an image-specific atlas, 12 iterations of atlas building are com-
puted with ANTs [1] for each channel in a stack with 80 iterations of diffeomorphic
registration per iteration. Another atlas building step is done to create an atlas
of atlases for each tissue section, to which each of the original images is mapped.
Linear interpolation is used so as to not create values outside data range.
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F. Robust Non-negative Tensor Factorization

500 550 600 650 700
Wavelength (nm)

0

0.1

0.2

0.3

0.4

N
o
rm

a
li
ze

d
 I

n
te

n
si

ty Image 1
Image 2

Corresponding Image

E. Tensorization

Fixed

Unfixed

500 550 600 650 700
Wavelength (nm)

0

0.1

0.2

0.3

0.4

N
o
rm

a
li
ze

d
 I

n
te

n
si

ty Image 1
Image 2

Corresponding Image

F
ix

ed
U

n
fi
x
ed

Abundance Image 1 Abundance Image 2

Abundance Image 1 Abundance Image 2

A
n
a
lo

g
o
u
sl

y
 o

b
ta

in
 t

en
so

r 
fo

r 
u
n
fi
x
ed

 t
is

su
e

Spectra

Spectra

F
ix

ed
 t

is
su

e

Donor

Fig. 3. An overview of the proposed pipeline and sample results. Panels A, B, C and
D are only shown for the fixed tissue for brevity, with the unfixed tissue undergoing
the same procedure. Pipeline: Fixed and unfixed images are obtained from the same
donor. The images are motion corrected (A, B and C show the process for two out of
four total images outlined in blue and red for each fixed tissue section). The images are
then flattened into a matrix (D) and stacked into a tensor for each set (E). The two
tensors undergo rNTF to reveal constituent spectra and spatial distributions (sample
results shown in F). The spectra from all 24 pairs are used for functional statistics. See
supplementary material for an expanded view of sample results.

We implement rNTF on GPUs for fast execution using PyTorch at fp64 pre-
cision. A rank-2 tensor factorization model is chosen using the CORCONDIA
heuristic [11] and all factors were initialized uniformly at random. Parameters
β = 1.6 (corresponding to mixed Poisson-Gaussian noise) and λ = 2.5 were cho-
sen heuristically and a tolerance of 10−6 was used for all of the optimization.
Sample tensor factorization results for a fixed/unfixed pair are shown in fig. 3F.

Hypothesis Testing Once constituent spectra are retrieved from all 24 pairs
of tissues, a matrix is created with the spectrum from the blue curve in fig. 3F



8 N. Dey, et al.

(lipofuscin, in retinal biology terminology) from each tissue section. All spectra
are normalized to unit 2-norm to only consider shape changes. Functional PCA is
then performed with model selection using the Bayesian Information Criterion.
Two eigenbases are retrieved, with two sets of coefficients. The pairs of coeffi-
cients are given to the Wilcoxon signed-rank test for testing. After Bonferroni
correction for two comparisons, we find no statistically significant differences
between the pairs. The procedure is repeated for the red curves in fig. 3F from
each donor and finds no statistically significant difference between them, either.

4 Discussion

To our application, we provide image and statistical analysis methodologies and
find no significant differences between the fluorescence spectra of fixed and un-
fixed tissue. This finding informs applications in multispectral retinal microscopy.
Further validation is required as two limitations exist: (1) in this specific applica-
tion, rNTF results are not guaranteed to be unique due to the additional need for
data imputation; (2) the motion correction cannot retrieve the original positions
and instead moves structures to the nonlinear mean of their movement.

The methods presented are general and amenable to several applications.
rNTF is suitable for applications in machine learning to handle grossly corrupted
measurements (outliers and nonlinearities), making only mild assumptions on
the outliers being sparse. The motion correction framework can be applied to
any spectral image displaying nonlinear deformations between channels. Finally,
when samples are paired functional observations, we develop a non-parametric
hypothesis testing framework. E.g., this statistical framework can be applied to
a longitudinal analysis of fiber tracts in diffusion MRI by registering fiber tracts
from the same subjects across a baseline and followup visit to test for differences
in fractional anisotropy.

Acknowledgments Author support and HPC provided by NIH R01EY027948
and NSF MRI-1229185, respectively. Validation data provided by Hayato Ikoma.
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A Overall Source Separation Algorithm

Algorithm 1: Robust NTF with data imputation and rank estimation.

Input:M∈ RI×J×K , β, λ.
Output: A,B,C and S.

1 For imputation, set indicator tensor W ∈ RI×J×K with wijk = 0 if mijk is
missing and wijk = 1 if mijk is available.

2 Initialize rNTF rank as P = 1.
3 repeat
4 Initialize factor matrices A ∈ RI×P ,B ∈ RJ×P ,C ∈ RK×P , and outlier

tensor S ∈ RI×J×K , all uniformly at random.
5 repeat

6 Impute M̃ → W ∗M+ (1−W) ∗ M̂, where M̂ = (
∑P
i=1 ai ◦bi ◦ ci +S).

// Block 1: use mode-1 matricization.

7 Fix B, C, and S, and update A→ A ∗
(

(M̃(1)∗M̂
.(β−2)
(1)

)(C�B)

M̂
.(β−1)
(1)

(C�B)

)
.

8 Update M̂(1) → A(C�B)T + S(1).
9 Fix A, B, and C, and update

S(1) → S(1) ∗
(

M̃(1)∗M̂
.(β−2)
(1)

M̂
.(β−1)
(1)

+λS(1)diag(‖s1‖2,...,‖sJK‖2)−1

)
.

10 Update M̂(1) → A(C�B)T + S(1).
// Block 2: use mode-2 matricization.

11 Fix A, C, and S, and update B→ B ∗
(

(M̃(2)∗M̂
.(β−2)
(2)

)(C�A)

M̂
.(β−1)
(2)

(C�A)

)
.

12 Update M̂(2) → B(C�A)T + S(2).
13 Fix A, B, and C, and update

S(2) → S(2) ∗
(

M̃(2)∗M̂
.(β−2)
(2)

M̂
.(β−1)
(2)

+λS(2)diag(‖s1‖2,...,‖sKI‖2)−1

)
.

14 Update M̂(2) → B(C�A)T + S(2).
// Block 3: use mode-3 matricization.

15 Fix A, B, and S, and update C→ C ∗
(

(M̃(3)∗M̂
.(β−2)
(3)

)(B�A)

M̂
.(β−1)
(3)

(B�A)

)
.

16 Update M̂(3) → C(B�A)T + S(3).
17 Fix A, B, and C, and update

S(3) → S(3) ∗
(

M̃(3)∗M̂
.(β−2)
(3)

M̂
.(β−1)
(3)

+λS(3)diag(‖s1‖2,...,‖sIJ‖2)−1

)
.

18 Update M̂(3) → C(B�A)T + S(3).

19 until convergence.
20 return A,B,C,S.

21 Compute CORCONDIA between M and (
∑P
i=1 ai ◦ bi ◦ ci + S).

22 P = P + 1.

23 until CORCONDIA decrease exceeds user-defined threshold.
24 return A,B,C,S.
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B Scientific Packages and Parameters Used

Here, we briefly list heavily used packages and any important parameter values.

B.1 Robust Non-negative Tensor Factorization

Robust non-negative tensor factorization was computed with PyTorch 1.0.0

in python. GPU-accelerated source code is available at https://github.com/

neel-dey/robustNTF. β = 1.6 was chosen heuristically corresponding to a mix-
ture of Poisson and Gaussian noise. λ = 2.5 was chosen to induce sufficient
outlier-sparsity.

The comparison with standard non-negative tensor factorization with data im-
putation was done using the N-way Toolbox for MATLAB, available at http:

//www.models.life.ku.dk/nwaytoolbox.

B.2 Diffeomorphic Motion Correction

Initial inter-image stack affine registration was performed with the SimpleITK

python library using normalized cross-correlation for image-matching. All regis-
trations for intra-image stack motion correction were performed at fp32 with the
ANTs toolbox, available at http://stnava.github.io/ANTs/. The greedy sym-
metric normalization algorithm is used with cross-correlation for image match-
ing with default pixel radius. To avoid losing subtle motion, no smoothing or
multi-scale strategies were used. 12 iterations of atlas building, with 80 inner
registration iterations were used. Qualitatively, the algorithm was found to cor-
rect motion with fewer iterations (8 and 60, respectively). Another 12 iterations
of atlas building were performed to construct the atlas of atlases for each tissue
section.

B.3 Functional Statistics

Functional Principal Component Analysis was performed with the PACE toolbox
for MATLAB, available at http://www.stat.ucdavis.edu/PACE/. Default tool-
box settings were used for these experiments.

C Larger Results Panel
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Fig. 4. A larger version of the sample results for a fixed and unfixed pair as shown in
Figure 3 of the main text. Row 1: A false-color composite of the spectral images excited
at 420 nm. Rows 2, 3, and 4: Emission spectra and abundance images retrieved by
robust non-negative tensor factorization.


