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Abstract

Autofluorescence is the emission of light by naturally occurring tissue components on absorption of
incident light. Autofluorescence within the eye is associated with several disorders, such as Age-related
Macular Degeneration (AMD) which is a leading cause of central vision loss. Its pathogenesis is incompletely
understood, but endogenous fluorophores in retinal tissue might play a role. Hyperspectral fluorescence
microscopy of ex-vivo retinal tissue can be used to determine the fluorescence emission spectra of these
fluorophores. Comparisons of spectra in healthy and diseased tissues can provide important insights into the
pathogenesis of AMD. However, the spectrum from each pixel of the hyperspectral image is a superposition
of spectra from multiple overlapping tissue components. As spectra cannot be negative, there is a need for a
non-negative blind source separation model to isolate individual spectra. We propose a tensor formulation
by leveraging multiple excitation wavelengths to excite the tissue sample. Arranging images from different
excitation wavelengths as a tensor, a non-negative tensor decomposition can be performed to recover a
provably unique low-rank model with factors representing emission and excitation spectra of these materials
and corresponding abundance maps of autofluorescent substances in the tissue sample. We iteratively
impute missing values common in fluorescence measurements using Expectation-Maximization, and use L2

regularization to reduce ill-posedness. Further, we present a framework for performing group hypothesis
testing on hyperspectral images, finding significant differences in spectra between AMD and control groups
in the peripheral macula. In the absence of ground truth, i.e. molecular identification of fluorophores, we
provide a rigorous validation of chosen methods on both synthetic and real images where fluorescence spectra
are known. These methodologies can be applied to the study of other pathologies presenting autofluorescence
that can be captured by hyperspectral imaging.

Keywords: non-negative tensor decompositions, unsupervised machine learning, hyperspectral
fluorescence microscopy imaging, functional data analysis, age-related macular degeneration

1. Introduction

Tensor decompositions are a form of multi-linear algebra widely used in unsupervised machine learning
(Anandkumar et al., 2014), signal processing (Cichocki et al., 2015), chemometrics (Smilde et al., 2005),
psychometrics (Carroll & Chang, 1970), and have recently found applications in medical image analysis
(Bharath et al., 2017; Schultz & Seidel, 2008; Cong et al., 2015; Li et al., 2017). While linear methods
like Principal Component Analysis (Hotelling, 1933), Independent Component Analysis (Comon, 1994) and
Non-negative Matrix Factorization (Paatero & Tapper, 1994; Lee & Seung, 1999) are common tools for
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unsupervised data analysis, they are limited when dealing with higher dimensional data. It is common to
concatenate or average high dimensional data in order to apply these methods which may ignore covariance
information across different dimensions and impede the derivation of accurate and/or interpretable solutions.

Tensor decompositions perform joint low-rank multi-linear approximations of higher dimensional data to
extract distinct features for each dimension by accounting for covariance across all dimensions. Moreover,
under mild conditions, they give unique solutions without strong constraints (Kruskal, 1989) often improving
reliability and interpretability over linear methods. This makes tensor decompositions well suited to data
analysis applications where multiple related datasets exist and interpretable features in each dimension are
expected. However, computing the decomposition and determining the number of features without ground
truth are NP-hard problems (Hillar & Lim, 2013) that require careful modeling and validation.

As our driving application, microscopic images of human donor retina tissue samples were captured by
hyperspectral cameras for a study of Age-related Macular Degeneration (AMD). AMD is a leading cause
of legal blindness in the elderly (Bourne et al., 2013), with the projected worldwide prevalence of AMD
reaching 288 million people in 2040 (Wong et al., 2014). Currently, there is no cure for the most common
form of AMD and its pathogenesis is not well understood. Autofluorescence imaging of the ocular fundus is
an important diagnostic tool for ophthalmologists who care for patients with AMD. Our long-term objective
in microscopic analysis of human donor eye tissue is to understand the biology underlying hyperspectral
autofluorescence imaging for in vivo early diagnosis.

The fluorescence spectrum of a fluorescent compound (i.e., a fluorophore) may provide information
about both its molecular identity and cellular environment. In the case of AMD, analysis of retinal tissue
autofluorescence holds particular significance, as endogenous fluorophores may have important pathogenic
roles (Sparrow & Boulton, 2005). The minute amount of these fluorophores are a major challenge to their
identification, yet this important information can however be obtained by determining their fluorescence
spectra with hyperspectral imaging, in concert with molecular assays in parallel (e.g., mass spectrometry).

Hyperspectral cameras can finely capture the intensity spectrum of a scene over multiple discrete wave-
lengths. Using hyperspectral fluorescence microscopy, multiple co-registered image stacks illuminated with
varying excitation wavelength can be acquired. In this way, the spectra of retinal tissue fluorophores at
different excitation wavelengths can be determined. Fluorescence is additive and the signal from each pixel
of a hyperspectral image is mixed in nature, with each pixel signal being a superposition of multiple layers
of fluorescent tissue. This highlights the need for a blind source separation of multi-excitation fluorescence
images, which is a natural extension of tensor methodology. The emission spectrum of a fluorophore typically
varies with excitation wavelength in intensity but not in shape (Lakowicz, 2006a). This introduces another
dimension of variation contained in the magnitude of the emission spectrum across excitation wavelengths
called the excitation spectrum of a fluorophore. The emission and excitation spectra of a fluorophore can
thus both provide important information about its identity. However, a direct application of tensor decom-
position is inapplicable due to the nature of fluorescence measurements.

In this paper, we present a regularized tensor decomposition and data imputation method to extract
the spectral and spatial characteristics of autofluorescent human eye tissue using hyperspectral images
captured with varying excitation light sources. In the current absence of ground truth of retinal fluorophore
spectra, we thoroughly validate our methods against both synthetic and real hyperspectral images with
known fluorophore spectra and known tensor rank. To illustrate how the resulting tensor components can
be utilized for distinguishing between groups, we present a hypothesis testing framework that considers the
resulting emission spectra as functional data.

1.1. Related Work
Decompositions of hyperspectral images are widely used in geospatial image analysis (Keshava & Mus-

tard, 2002; Bioucas-Dias et al., 2012; Dobigeon et al., 2016). They possess known spectra of earth-based
substances useful for validation, with strong justifications for additivity constraints, pure pixel assumptions,
and physical models of reflection. However, these methodologies do not easily translate to hyperspectral
fluorescence microscopy. In the context of blind source separation, Independent Component Analysis has
been explored for feature extraction in hyperspectral images, with limited success due to statistical indepen-
dence assumptions (Nascimento & Dias, 2005). A popular alternative is Non-negative Matrix Factorization
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(NMF), in which where a data matrix is decomposed into a set of non-negative basis vectors and coefficients.
This non-negativity leads to better interpretation for some kinds of data analysis.

NMF applied to hyperspectral images for spectral unmixing (Sajda et al., 2003; Dobigeon et al., 2016),
results in basis vectors and coefficients maps interpreted as spectral signatures and spatial distributions of
spectral sources (also known as abundance images), respectively. With hyperspectral fluorescence microscopy
of tissues, NMF has been used to extract fluorescence emission spectra (Gobinet et al., 2004; Neher et al.,
2009; Montcuquet et al., 2011) including applications to the human retina (Johri et al., 2014). Due to
rotational ambiguity, NMF based approaches provide non-unique solutions and may be non-reproducible due
to local minima and initialization sensitivity. To address these issues, multi-set concatenation methodologies
have been developed in retinal hyperspectral fluorescence microscopy in a series of papers (Smith et al., 2014;
Ami et al., 2016; Tong et al., 2016) in which a tissue sample is repeatedly illuminated and imaged using several
different excitation wavelengths. The corresponding hyperspectral image stacks are then concatenated and
unmixed using NMF. However, multi-set concatenation approaches ignore covariances between the image
stacks, and can lead to overfitting. As NMF-based approaches have a diverse set of possible solutions,
hypothesis testing for differences between groups of interest becomes challenging. Morover, as they cannot
directly account for differing excitation wavelengths, they cannot obtain excitation spectra.

Closely related work to our analysis lies in the field of chemometrics. A fluorescence unmixing in chemo-
metrics typically involves measuring a fluorescence emission signal from a mixture of different fluorophores
in a test tube, measured across changing excitation wavelengths, from multiple test tubes containing the
same compounds in different ratios (Smilde et al., 2005). Analogously, our paper performs a similar experi-
ment by considering every pixel of a hyperspectral image as virtual test tube in a fluorescence experiment.
However, in chemometric fluorescence unmixing, there is no notion of spatial distribution and chemometri-
cians typically measure excitations and emissions at very fine spectral resolutions, which is not possible with
fluorescence microscopy at this time. Finally, Neher et al. (2009) consider an extension of an NMF-based
approach to non-negative tensor decomposition for a fluorescence microscopy case study. However, the de-
rived updates are not guaranteed to converge (Lin, 2007) or maintain non-negativity, instead heuristically
setting negative values to small positive values during the optimization.

1.2. Proposed Approach
For our driving application, a tissue sample is illuminated with different excitation wavelengths and a

hyperspectral image is captured for each excitation wavelength. As described above, multiple excitation
wavelength hyperspectral fluorescence microscopy of a tissue sample has intuitive extensions to tensor ap-
proaches. Computing a non-negative tensor decomposition of multi-excitation hyperspectral images leads
to recovery of the emission spectra and the spatial abundances of fluorophores within the tissue sample and
to our knowledge, the first extraction of the excitation spectra of retinal fluorophores from hyperspectral
images. We adopt a flexible alternating optimization approach towards computing the non-negative tensor
decomposition, allowing for various cost functions, constraints, and regularity parameters (Huang et al.,
2016).

Further, multi-excitation fluorescence measurements are prone to missing values being present across the
dataset, which we iteratively impute during the tensor decomposition (Tomasi & Bro, 2005). To reduce the
ill-posedness of retrieving both factor matrices and imputing missing values simultaneously, we employ L2

regularization. Additionally, while the uniqueness of tensor decompositions makes them attractive for data
mining applications, determining the number of components for the decomposition and avoiding overfitting
is not straightforward. We thus present thorough validation of our results using metrics from chemometrics
on synthetic and real fluorescence experiments where the ground truth is known.

To demonstrate the utility of tensor decomposition-derived emission spectra for our application, we
present a novel perspective on performing group testing on spectral images by considering the spectra as
discrete realizations of functions of wavelength. This allows the use of two-sample non-parametric functional
hypothesis tests to detect group differences. As a preliminary result, we find a statistically significant
difference in emission spectra in a small dataset of AMD and control group donors, that merits further
validation with a larger sample size. While chemometrics has recently considered the usage of functional
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Figure 1: A comparison of tissue samples from a young adult with a normal retina (top row) and an older adult with advanced
AMD (bottom row). Shown are microscopic views of retinal tissue in the same orientation as it would be seen in clinical fundus
autofluorescence imaging but at higher magnification. Tissue from the 16-year-old male (top row) shows the hexagonal cells
of the RPE layer and in the upper left corner, Bruch’s membrane bared by mechanical disruption of the RPE layer. Tissue
from the 81-year-old male (bottom row) has two drusen (see description of drusen in Figure 3). Left column: Images of
ex-vivo RPE tissue at 40× magnification. The distinct hexagonal structure of RPE cells in the top row is severely disrupted
by age and disease in the bottom row, with the RPE cell layer disrupted by two large oval-shaped drusen deposits. Middle
Column: Regions corresponding to different tissues labelled manually. The Bruch’s membrane lies directly under the RPE
and is present in the entire background of both samples. Right Column: RGB false colour composites of the fluorescence
emission of tissues shown in the left column excited with light at 436 nm wavelength. Drusen are hyperautofluorescent relative
to their surroundings at this excitation wavelength as pixel brightness corresponds to fluorescence intensity.

representations of spectra (Saeys et al., 2008; Möller et al., 2016), to our knowledge, this is the first use of
functional hypothesis tests to distinguish between groups of hyperspectral images.

2. Methods

2.1. Tensor Algebra
2.1.1. Background

A tensor represents a multidimensional array, i.e. data with n indices for each entry forms an n-
dimensional tensor. We borrow notation from Kolda & Bader (2009) with vectors, matrices and tensors
being denoted as x, X, and X , respectively. Vectors within tensors are referred to as fibers, i.e. a mode-i
fiber is a vector in the tensor formed by fixing every index in the tensor except the ith index and letting
the data vary along i. Re-arranging a tensor into a matrix is called matricizing. To matricize a tensor
X ∈ RI1×I2×...×In in mode-i into X(i), we take the mode-i fibers of X and concatenate them as columns of
X(i) ∈ RIi×(I1...Ii−1Ii+1...In) (Kolda, 2006).

If an n-dimensional tensor can be expressed as the outer product of one set of n vectors, it is a rank-1
tensor X = x(1) ◦ x(2) ◦ . . . ◦ x(n). The overall rank of a tensor is defined as the minimum number of rank-1
tensors that need to be summed in order to achieve perfect reconstruction (Hitchcock, 1927). A three-
dimensional tensor X of size I × J ×K has rank-R if R is the smallest number of sets of vectors a1×i, b1×j

and c1×k that reconstruct the tensor as,

xijk =

R∑
r=1

airbjrckr where i ∈ RI ; j ∈ RJ ; k ∈ RK .

In terms of factor matrices, we can write the tensor decomposition of X as X =
∑R

p=1 λp ap ◦bp ◦ cp where
λp is a scalar absorbing all of the weights, and ◦ is the vector outer product. The tensor X can be matricized
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Figure 2: Visualizing the rank-R Canonical Polyadic Decomposition/Parallel Factorization of a three-dimensional tensor. The
summation over the outer product of the set of fibers, ai×r, bi×r, ci×r from 1 to R reconstructs a tensor of rank-R.

in 3 different modes as, X(1) = λA(C�B)
T
, X(2) = λB(C�A)

T
, and X(3) = λC(A�B)

T where λ is
the vector containing all λp’s, � is the matrix Khatri-Rao product and A, B and C are factor matrices
containing all ap’s, bp’s and cp’s, respectively. [[A,B,C]] represents the tensor reconstructed by the factor
matrices.

2.1.2. Non-negative Tensor Decomposition
To recover the individual rank-1 tensors, we use parallel factor analysis (PARAFAC) (Harshman, 1970),

also referred to as Canonical Polyadic Decomposition (CPD). For the rest of this paper, unconstrained
CPD/PARAFAC is referred to as CP and non-negative CPD/PARAFAC is referred to as NNCP. With
real-world noisy data we often solve for the factors iteratively in an alternating optimization (AO) manner.

We require all factors to be non-negative, and wish to introduce regularization on the factor matrices to
reduce ill-posedness. To this end, we adopt and extend the Alternating Optimization-Alternating Direction
Method of Multipliers (AO-ADMM) method for constrained tensor factorization (Huang et al., 2016) for
our problem. AO-ADMM is a block coordinate update style algorithm. It alternates between solving the
tensor factorization in each matricized form in its outer loop, and in the inner loop solves each individual
constrained least squares problem in an ADMM fashion (Boyd et al., 2011) which allows for the usage of
multiple constraints. As the updates made in the constrained sub-problems are element-wise, we implement
the algorithm on graphics processing units (GPUs) for a 2× improvement in speed on the specific problems
considered in this paper.

When the tensor has missing values, there are several approaches in order to fit a CP model (Kroonenberg,
2007), most common of which are weighted regression with the weights being contained in an indicator tensor
W with entries of 0 and 1 for missing and not-missing, i.e, fitting a model only to the available data. AO-
ADMM can perform data imputation in its inner iterations, but in its original formulation cannot handle
the case where entire fibers of the tensor are systematically missing (as in our application). To solve this,
we implement an Expectation-Maximization method to impute the missing values at each iteration from the
current estimate of the CP model (Kroonenberg, 2007; Smilde et al., 2005, Section 6.9). We choose the EM
model for its straightforward integration into the outer loop of the AO-ADMM procedure used. Further,
weighted regression and EM imputation have been proven to be equivalent in CP models (Kiers, 1997).

The entire procedure (including rank estimation in Section 2.2) is illustrated in Algorithm 1. Regular-
ization is written as r(·). Smoothness-promoting L2 regularization is used here, although AO-ADMM can
accomodate other regularizers as well. Consider the tensor X with missing values that we want to decom-
pose, and the indicator tensor W from earlier. In the middle loop of Algorithm 1, the missing values of X
are iteratively updated as X → W ∗ X + (1−W) ∗ X̂ where X̂ is the current estimate of the NNCP model
and ∗ is the Hadamard (element-wise) product. As the NNCP model is initialized randomly in this paper,
the initial estimates of the missing data are random values as well. In Section 4.2.1 we find that the iterative
imputation method works well in recovering the ground truth factor matrices in our data.

2.2. Model Selection
Despite the attractive properties of CP, determining the number of factors (rank) is an NP-hard problem

(Håstad, 1990). Since prior knowledge of the number of spectral sources in autofluorescent tissue is not
available, an appropriate validation metric is required to verify the number of components. In chemometrics,
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Algorithm 1: NNCP with unknown rank estimation and data imputation.
Input: X ∈ RI×J×K .
Output: A,B,C and λ.

1 Create indicator tensor W ∈ RI×J×K with wijk = 0 if xijk is missing and wijk = 1 otherwise.
2 Initialize rank of decomposition as g = 1.
3 repeat
4 Initialize λ ∈ Rg and Factor Matrices A ∈ RI×g,B ∈ RJ×g,C ∈ RK×g.
5 Impute initial estimate of missing values in X as X → W ∗ X + (1−W) ∗ [[A,B,C]] (all

element-wise).
6 Define Â, B̂, Ĉ as Â = A× diag(λ), B̂ = B× diag(λ), Ĉ = C× diag(λ).
7 repeat
8 Fix B and C, solve ‖X(1) − Â(C�B)

T
‖2F + r(Â) for Â s.t. Â ≥ 0.

9 X → W ∗ X + (1−W) ∗ [[A,B,C]].

10 Fix A and C, solve ‖X(2) − B̂(C�A)
T
‖2F + r(B̂) for B̂ s.t. B̂ ≥ 0.

11 X → W ∗ X + (1−W) ∗ [[A,B,C]].

12 Fix A and B, solve ‖X(3) − Ĉ(B�A)
T
‖2F + r(Ĉ) for Ĉ s.t. Ĉ ≥ 0.

13 X → W ∗ X + (1−W) ∗ [[A,B,C]].
14 until convergence.
15 return λ,A,B,C.
16 Compute CORCONDIA between X and [[A,B,C]].
17 g = g + 1.
18 until CORCONDIA decrease exceeds threshold.
19 return λ,A,B,C.

the core consistency diagnostic (CORCONDIA) metric is often used to decide on an appropriate rank (Bro
& Kiers, 2003) by exploiting the relationship between CP and the Tucker3 model (Tucker, 1964).

Briefly, the Tucker3 model decomposes a tensor X ∈ RI×J×K into a smaller ‘core’ tensor G multiplied
by a matrix along each mode as shown below,

X =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr,

where A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R are factor matrices along each mode, and G ∈ RP×Q×R is the
core tensor whose entries show the level of interaction between different factors. Several different CP models
with increasing numbers of components may be appropriate and the model with the highest rank which is
still appropriate is considered to be the most reasonable choice. For the CP model to be valid, the core
tensor G should be an identity tensor when the Tucker3 model is fit with CP components.

Let T be an F × F × F identity tensor. To assess the similarity between G and T , CORCONDIA is
defined as,

CORCONDIA = 100

(
1−

∑F
d=1

∑F
e=1

∑F
f=1(gdef − tdef )2

F

)
,

where gdef and tdef are the def -th elements of G and T , respectively. CORCONDIA close to 100% implies
an appropriate model, with closeness to 100% understood relative to the changes compared with models of
lower rank. Core consistency decreases gradually with increasing rank, until the maximum rank is exceeded
and the decrease becomes dramatic. It is at this inflection point that the rank should be chosen.
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2.3. Group Testing with Spectral Images
As shown in Section 4, NNCP can disentangle mixed emission and excitation spectra. However, the mul-

tiple resulting spectra specific to each donor can be difficult to interpret, especially across groups (AMD and
non-AMD in this study). This highlights a need for a principled framework for detecting group differences
in the results we obtain from NNCP. Parametric multivariate tests can be applied, but they would assume
normality and treat adjacent channels as individual features and would not take into account their sequential
nature. Further, the number of features would be larger than the sample size, precluding their straightfor-
ward application. As the resulting emission spectra are discrete representations of continuous curves indexed
by wavelength, they can be considered infinite-dimensional functional data (Ramsay & Silverman, 2007).
Functional data analysis has a rich history in fiber tract-based statistics in Diffusion Tensor Imaging (Geng
et al., 2012; Zhu et al., 2011). Recently, Pomann et al. (2016) proposed a two-sample non-parametric test
for fiber tract data which we adopt for our problem and briefly describe below.

After NNCP, each donor has a set of emission spectra Xi ∈ Rm where m is the number of image channels
and i = 1, 2, ..., k for a rank-k decomposition with individual vector corresponding to individual fluorophores.
The null hypothesis is that the curves from the two groups are equal in distribution,

H0 : X1(·) d
= X2(·),

where the superscript denotes group membership. The spectra corresponding to the same fluorophore across
m donors are concatenated into a matrix Yk ∈ Rm×n. Repeating this across k fluorophores creates k matrices
of size m×n. Computing the functional principal components analysis (Hall et al., 2006) of each matrix Yk
retrieves a set of functional basis vectors and projections ξ, with the number of bases U set by the fraction
of variance explained (0.95 in this study). The null hypothesis above then becomes that the U projections
of the curves from the two groups on the eigenbasis are equal in distribution,

HU
0 : {ξ1u}Uu=1

d
= {ξ2u}Uu=1,

where 1 and 2 in the superscript of ξ indicate group membership. Each of the U hypotheses are tested by
the two-sample non-parametric univariate Anderson-Darling test (Scholz & Stephens, 1987), which is similar
to but more powerful than the Kolmogorov-Smirnov test (Stephens, 1974). Since there are U comparisons
corresponding to U hypotheses, we perform a Bonferroni multiple comparisons adjustment. Combining all
of the above, the original null hypothesis is rejected if

min
1≤u≤U

pu ≤ (α/U),

where pu is the u-th p-value returned by the multiple Anderson-Darling tests and α is the chosen level of
significance.

3. Materials

3.1. Data Acquisition
Hyperspectral autofluorescence microscopy was performed ex-vivo on human donor retinal tissue. Twenty

µm thick flatmounts of Retinal Pigment Epithelium (RPE) cells attached to the underlying Bruch’s Mem-
brane (BrM) close to the macula are imaged at 40× magnification using an upright microscope with a hy-
perspectral camera (Nuance, Perkin-Elmer). The dataset includes ten donor samples with non-neovascular
dry AMD (mean age 86.20 years with 3.46 years standard deviation) and five age-matched control donors
(mean age 84.40 years with 2.19 years standard deviation). Four filter cubes corresponding to 436, 480,
500, and 560 nm excitation wavelengths were used to filter the excitation light source from the microscope.
The hyperspectral camera was used to capture autofluorescence emission spectra from these tissues evenly
at 10 nm intervals from 420 nm to 720 nm for each of the excitation wavelengths, leading to 31 channels
per excitation wavelength. For further details on acquiring this dataset, see Tong et al. (2016). See Gao &
Smith (2015) for image acquisition methodology and Ach et al. (2014) for details on tissue preparation.
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Figure 3: Normalized hyperspectral images on a grid of emission vs. excitation wavelengths from a donor with AMD. Each
column shows the sample illuminated with a different excitation wavelength, with the rows indicating the corresponding
emission. The blank spaces in the figure are unobservable emission channels. 7 out of 26 emission channels are displayed due to
space constraints. Images show two drusen, the characteristic lipid-rich extracellular dome-shaped deposit of AMD, surrounded
by retinal pigment epithelium (RPE), a layer of support cells for the light-sensing photoreceptors. In the lower right corner of
each panel the RPE is absent, revealing Bruch’s membrane, an extracellular matrix and vessel wall that underlies the RPE.
At shorter wavelength emissions, the druse contents and Bruch’s membrane are visible. At higher emission wavelengths, the
RPE layer is not visible on the apex of the druse dome (which comes up out of the plane of the tissue). Instead the RPE is
thickened around the drusen bases, forming two haloes.

3.2. Data Pre-processing
The hyperspectral images are pre-processed to remove variation due to intrinsic camera properties, ex-

perimental design and acquisition parameters. The image stacks are first recalibrated by the efficiency of
the corresponding emission filter cube and then by the quantum efficiency of the camera detector. Addition-
ally, the fluorescence emission spectrum is positioned along the wavelength axis at longer wavelengths than
the excitation wavelengths. Therefore, while the camera captures 31 channels of emission, only channels
with wavelengths longer than the excitation wavelength can be measured, making the shorter wavelength
channels missing values in the statistical sense. Further, emission filters which filter light from the sample
before it reaches the detector attenuate several channels longer than the excitation wavelength. Therefore,
the channels of the image stack at wavelengths shorter than the cutoff of the emission filter used are also
modeled as missing values.

The intensity value of a pixel in a hyperspectral image is a total photon count. To have well exposed
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images, the exposure time of the camera has to vary with the intensity of tissue autofluorescence. The
shorter the excitation wavelength, the shorter the exposure time needed to collect an adequate number of
photons. The longer the excitation wavelength, the longer the exposure time. For example, in our study,
an image stack corresponding to a 436 nm excitation wavelength may be exposed for 30-50 ms, whereas a
560 nm excitation wavelength image stack may be exposed for 200-300 ms. Therefore, the image stacks are
scaled by their exposure time in milliseconds with the intensity of a pixel representing photons detected per
millisecond.

3.3. Data Arrangement and Interpretation
A hyperspectral image forms a three-dimensional cube of data with two spatial dimensions and one

spectral dimension. A single hyperspectral image can be converted to a matrix via mode-3 matricization.
The columns of this matrix correspond to the emission spectra of the pixels in the hyperspectral image. To
create a tensor, we take hyperspectral images of the same tissue sample under varying excitation wavelengths.
Hyperspectral images are captured at four excitation wavelengths and undergo mode-3 matricization and
are inserted into a tensor as a frontal slice arranged in ascending order of excitation wavelength. In this
arrangement, the magnitude scalings of the emission corresponding to a pixel, i.e. the excitation spectrum
of a pixel is captured in a mode-3 fiber.

We capture 31 channels of image size 1040 × 1392 pixels over the visible spectrum, forming a 1040 ×
1392 × 31 hyperspectral image. After mode-3 matricization, an image channel becomes a 1447680-length
vector and the hyperspectral image forms a matrix of size 31× 1447680. After capturing four hyperspectral
images for each tissue sample, we insert the corresponding matrices as the frontal slices of a tensor of size
31×1447680×4. The first five emission channels are discarded as there are no observed values in them with
any of the excitation wavelengths. A series of hyperspectral images across excitation wavelength channels
now forms a three-dimensional tensor X ∈ RI×J×K , where the number of emission wavelength channels
I = 26, the number of pixels J = 1447680, and the number of excitation wavelengths K = 4. X contains
24.04% missing values because of the cut-off of the emission filter as explained in Section 3.2. Low-rank
decomposition using NNCP on this tensor provides mode-1 factors representing the emission spectra of
fluorophores and mode-3 factors representing their excitation spectra, while mode-2 factors represent their
spatial abundances.

3.4. Brief Overview of AMD and Fluorescence Microscopy
In this section, we introduce ophthalmological and chemical concepts required to interpret the results

shown in Section 4. Over its lifespan, a single RPE cell ingests hundreds of thousands of photoreceptor
outer segment tips and these segment tips ultimately give rise to fluorescent lysosome-related intracellular
organelles called Lipofuscin (LF) and Melanolipofuscin (ML) (Kennedy et al., 1995). LF/ML accumulation
within the RPE cells is strongly correlated to aging within the eye (Sparrow & Boulton, 2005). RPE
autofluorescence is largely due to LF/ML accumulation. The RPE layer lies upon the weakly autofluorescent
Bruch’s membrane (BrM). LF/ML can be thought of as RPE inclusions and drusen/BrM can be thought of as
Sub-RPE structures. To study AMD mechanisms, finding age or disease related changes in the fluorescence
spectra of RPE and adjacent tissues is of importance.

The term fluorophore generally refers to a single fluorescent compound. However, as spectral ground
truth is not available in this study, a spectrum recovered could be the spectrum of a single fluorophore or a
family of multiple fluorescent compounds which are closely related in a spectral and spatial sense. Therefore,
we use the term fluorophore interchangeably between a single fluorophore and a family of closely related
fluorophores. Fluorescence signals are strongly sensitive to fluorophore environment (Lakowicz, 2006b).
Therefore, how the tissue samples were prepared, the retinal location that they were harvested from, and
age can all affect the spectral and quantitative characteristics of the data.

In fluorescence spectroscopy, the same fluorescence emission spectrum is generally observed irrespective
of the excitation wavelength (Kasha, 1950) and the intensities of fluorescence emission spectra are directly
proportional to the concentration of the respective fluorescing compounds in the test tube. In our formu-
lation, we retrieve a weight vector λ which contains the weights of the individual components and can be
thought of as an analogue for the amount of the respective fluorophores in the donor sample.
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4. Experiments and Results

4.1. Tissue Experiments
In this section, quantitative and qualitative results are presented with the data acquired, pre-processed

and arranged as per Sections 3.1, 3.2 and 3.3 respectively. An appropriate rank of factorization was deter-
mined, NNCP was applied, and the two groups of AMD and non-AMD tissues underwent statistical testing
to determine differences in emission spectra. The experiments were implemented in MATLAB R2018a using
a Linux workstation with an Intel i7-5930K CPU and 32 GB RAM and a server virtual machine with an
NVIDIA Tesla P100 for GPU accelerated tensor decomposition. Research toolboxes heavily utilized included
the Tensor Toolbox v2.6 (Bader & Kolda, 2015), the N-Way Toolbox (Andersson & Bro, 2000), and the
PACE toolbox for functional data analysis (Yao et al., 2003). All initializations for NNCP procedures were
drawn uniformly at random with random number generator states set based on system time. All displayed
spectra are normalized to unit L2 norm, unless stated otherwise.

4.1.1. Rank Selection
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Figure 4: Left: Boxplot of CORCONDIA values on the entire dataset for NNCP using rank-1 to rank-3 factorizations. The
sharp inflection after rank-2 suggests that NNCP is over-fitting the data and that two components are appropriate. Center
and Right: CORCONDIA plots of rank-2 and rank-3 NNCP models applied to a specific image. The red dots represent the
values along the super-diagonal of the core tensor which should be close to one and the green dots represent the off-diagonal
values which should be as close to zero as possible. The blue line represents ideal values. Increasing rank from two to three
shows abrupt undesirable changes in core values.

The difficulty in choosing an appropriate rank was detailed in Section 2.2. Performing a core consistency
analysis of the NNCP model on this dataset finds that two components appropriately model the data
as shown in Figure 4 and ensures that the factors are not too closely correlated with each other. The
CORCONDIA results shown in Figure 4 were obtained on spatially downsampled images due to computation
time. This approximation was verified to give similar CORCONDIA results to three test images analyzed
at full resolution. For consensus, Bayesian rank estimation techniques for NNCP (Mørup & Hansen, 2009)
and non-subjective versions of CORCONDIA which account for noisy data and reconstruction error (Liu
et al., 2013b) determine the same rank as well.

4.1.2. NNCP decomposition
Rank-2 NNCP was performed on both groups with L2 regularization applied on emission and excitation

spectra. No regularization was applied on abundance images as they may not have smooth or sparse
characteristics, although this can be applied if required. The algorithm was allowed to perform a maximum
of 30, 000 outer iterations with a convergence tolerance of 10−6, each initially performing 30 inner ADMM
iterations per sub-problem with a tolerance of 10−3, eventually increasing to 40 inner ADMM iterations with
tolerance 10−4 after 4, 000 outer iterations. Qualitatively, the algorithm was found to give similar results
with fewer outer iterations (4, 000).
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Figure 5: A collage of four tissue samples from donors with AMD and controls, and their corresponding NNCP decomposition.
Readers are encouraged to zoom in for tissue details. In Row 1, by transmitted light, the RPE layer appears as a continuous
sheet of hexagonal cells with brown pigment. In the non-AMD samples, the absence of RPE represents mechanical damage
that reveals Bruch’s membrane. In the AMD samples are small drusen (third column) and ill-defined deposits overlaying
incompletely removed pigmented tissue (out of focus brown material; fourth column). In Row 2, the false color microscopic
images were taken at an excitation wavelength of 436 nm. The yellow-brown hexagonal cells are the RPE layer. Green
regions are underlying Sub-RPE tissues. In Row 3, the emission spectra are multiplied by the corresponding weights in the
decomposition to give a relative fluorescence intensity value of that signal across the entire image. The excitation spectra are
linearly interpolated between the four available points for visualization purposes. In Rows 4 and 5, the abundance images
give the spatial localization of RPE and Sub-RPE components, respectively. For example, in column 1 it can be clearly seen
that the RPE layer overlays Sub-RPE tissue. In columns 2 and 4, sub-RPE autofluorescence is less visible in RPE regions. In
column 3 a bright green druse is hyper autofluorescent compared to other sub-RPE regions.
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The decomposition finds two major components, which can be attributed to RPE and Sub-RPE structures
via their spatial distributions. Figure 5 shows results for four out of fifteen donor samples. The brightfield
and fluorescence images show strong heterogeneity of tissue morphology, whereas the spectra recovered are
stable across donors. Subtle changes in the emission spectra between donor samples are observed. For
example, the sub-RPE emission spectrum (red curve) in Column 3 of Figure 5 shows a noticeable blue-shift
(peak shifting towards the left) in comparison to other donor samples. Large variations are noticed in the
fluorescence intensity, which is indicative of the amount of fluorophores being different across the tissue
samples, as well as tissue preparation and experimental conditions. The excitation spectra are found to be
largely consistent between different donors. However, there are only four points available (corresponding to
four excitation wavelengths) and there may be variation in between these points.

4.1.3. Group testing
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Figure 6: Eigenbases/functional principal components (FPCs) of the NNCP derived emission spectra corresponding to RPE
(left) and Sub-RPE (right) components from the entire dataset. Group testing is performed on the projections of the emission
spectra onto these bases.

On retrieving the emission spectra for all fifteen donors, they are assigned to their respective groups
(AMD or non-AMD) as per Section 3.1 and made to carry the weights of the NNCP decomposition. Func-
tional hypothesis testing is performed using methodology presented in Section 2.3. The functional bases are
determined with functional principal components analysis with a Gaussian kernel, with most other param-
eters chosen via cross-validation in PACE with random effects computed using numerical integration (Yao
et al., 2003). The number of bases was chosen based on the fraction of variance explained, chosen to be
0.95 in this study, finding two bases to be appropriate. Qualitatively, a higher fraction was found to return
noise-like bases. A threshold for significant differences between groups was chosen to be a 5% chance of
a Type-I error. A two-sample univariate non-parametric Anderson Darling test is applied to each set of
projections. As two comparisons are made corresponding to two sets of bases and projections, a Bonferroni
correction is applied which reduces the threshold for significance to p = 0.025.

The bases are shown in Figure 6. We find statistically significant differences for both RPE (p = 0.0233
< 0.025) and Sub-RPE (p = 0.0237 < 0.025) emission spectra in the near periphery (just outside the
macula). It is important to contextualize these results and state limitations. First, the sample size (n = 15)
is small and outliers can cause Type I errors. Second, donors within the AMD group are at various stages
of the disease which could affect these results. However, it should be highlighted that non-parametric tests
have less statistical power than parametric tests, and especially so with small sample sizes. Further, the
Bonferroni correction is a highly conservative adjustment. Additional validation will be performed in the
future with a larger sample size and in tissues with better preserved central macula, where differences in
sub-RPE structures between cases and controls are expected to be higher (Curcio et al., 2013).
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4.2. Validation
Here we test the ability of NNCP to distinguish between fluorophores spectrally and spatially with known

ground truth available for validation. Section 4.2.1 presents fluorescence reference standards captured under
the same imaging framework. Additionally, it tests the applicability of additional constraints often employed
in geospatial image analysis. Section 4.2.2 presents synthetic data and tests the advantages of the multi-
linear approach over NMF-style approaches.

4.2.1. Real Data: Fluorescent Beads
Fluorescent beads (also known as microspheres) are used to calibrate fluorescence microscopes as they

have known emission and excitation spectra provided by the manufacturers. They are localized to specific
regions on the imaged slide, which is ideal for testing both spectral and spatial capabilities of the NNCP
framework. Four hyperspectral images of fluorescent microspheres (Thermo Fisher Scientific) were captured
using excitation wavelengths of 420, 450, 480, and 500 nm using the same imaging system used to acquire
the tissue images. To account for instrumental variation, emission and excitation spectra were physically
measured at those wavelengths independently prior to unmixing and are treated as ground truth shown
in Figure 7A. The two fluorophores in the image are highly similar in both emission spectra shape and
peak wavelength. However, bead 2 is significantly dimmer than bead 1. Additionally, the blank regions of
the image have an intrinsic noise spectrum induced by the physics of the camera, referred to here as the
background spectrum. These details combined create a challenging blind source separation problem.

The unmixing results for beads are shown in Figure 7B1. There is a very close correspondence between the
NNCP recovered emission and excitation spectra and the measured ground truth. Spatially, NNCP is able to
localize the fluorophores correctly. Interestingly, in Abundance 3 NNCP localizes the background underneath
bead 2 as well indicating that due to its low fluorescence, the spectrum of bead 2 and the background are
comparable in intensity. A minor limitation is noticed in our choice of the CORCONDIA metric which is
58.7040 for the rank-3 decomposition here. CORCONDIA values in this range are acceptable in practice
(Smilde et al., 2005), However, it should ideally be closer to 100, which highlights that the CORCONDIA
heuristic is conservative for very correlated fluorophores such as bead 1 and bead 2.

In contrast to typical approaches in geospatial spectral unmixing, an additive sum to one constraint on
the abundance images is not imposed in this work as the physics of multi-layered fluorescence in tissue are
unclear, and ground truth does not currently exist for these tissue spectra. Thus, reinforcing this constraint
might cause approximation errors. To explore this, we perform a preliminary analysis with an additional
sum to one constraint on the abundance images. Simultaneous non-negativity and sum to one constraints
can be efficiently implemented in the AO-ADMM framework by replacing the abundance non-negative least
squares sub-problem with a simplex projection introduced in Duchi et al. (2008); Wang & Carreira-Perpinán
(2013).

The sum to one results are shown in Figure 7B2. Qualitatively, we find that using the sum to one
constraint gives the abundance images stronger interpretability, with the background and beads correctly
localized. However, significant distortions are present in the bead 2 emission spectra shown in the red high-
lighted region. As we are most interested in the emission characteristics of fluorophores, limiting constraints
to non-negativity only in this kind of data may be appropriate. Quantitatively, the CORCONDIA measure
of trilinearity reduces from 58.7040 to 57.5242 with the addition of the sum to one constraint as well.

4.2.2. Synthetic Data
To verify whether the correct factors and rank are returned by NNCP, we can generate synthetic data

with the required additive multi-excitation nature of the hyperspectral images of autofluorescent tissue.
Also, to evaluate the advantages of using multiple excitation wavelengths to recover emission spectra in an
NNCP formulation instead of decomposing each image stack individually, we compare the results of NMF
and NNCP. In order to let NMF and NNCP work with the same data, no data is assumed to be cutoff by
the simulated excitation, i.e. there is no missing data.

To generate the tensor, 5 excitation wavelengths and 31 emission channels of size 500 × 500 are chosen.
To simulate emission spectra, three Gaussian probability density functions are used to represent emission
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Figure 7: NNCP analysis of fluorescent beads with known spectral properties on the same microscope used for tissue images.
Column A. Ground truth emission and excitation spectra for the three beads shown in the false color image. Here, emission
spectra are normalized with respect to the maximum intensity. The two beads shown in the blue bounding box are the same
fluorophore, the bead in the red bounding box is minutely shifted spectrally and dimmer in intensity. The dark regions possess
a spectrum referred to here as the background. Column B. Results of NNCP decomposition both with (B2) and without
(B1) a sum to one constraint. Both approaches adequately recover spectral and spatial factors corresponding to the ground
truth. Enforcing the sum to one constraint causes distortions (highlighted in red bounding box) in the recovered emission
spectra.

14



+ + =

Abundance 1 Abundance 2 Abundance 3 Mixture

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Substance 1
Substance 2
Substance 3
Additive Envelope

Substances

5 10 15 20 25 301

Simulated Emission Wavelength Simulated Excitation Wavelength

S
im

u
la

te
d
 E

m
is

si
o
n
 S

p
ec

tr
a

S
im

u
la

te
d
 E

x
ci

ta
ti

o
n
 S

p
ec

tr
a

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Substance 1
Substance 2
Substance 3

Substances

Mixture + Noise

⟶

Figure 8: Synthetic spectra and their spatial distributions in a hyperspectral image used to generate five hyperspectral images.
Three Gaussian probability density functions of mean 6, 18 and 24 with sigma 3, 3 and 4 were chosen to simulate emission
spectra, while excitation spectra were chosen in order to simulate phantom fluorescent substances either becoming more or less
intensely fluorescent with increasing excitation wavelength. The normalized 16th emission channel of the second hyperspectral
image is displayed as the abundance images. All five hyperspectral images are corrupted with both Poisson and Gaussian noise.

spectra of three different phantom substances. A hyperspectral image is then constructed with spatial
overlap of the three substances, with one substance placed on the left, one on the right and one present
throughout the entire image causing each pixel to be a mixture of two to three substances. To simulate
concentration differences of substances within each region, the signals are scaled spatially. The images are
corrupted using both Poisson and Gaussian noise typical to fluorescence microscopy (Waters, 2009). Five
hyperspectral images are then constructed by using the excitation spectra shown in Figure 8 to scale the
spectra of each component, with some components becoming brighter and some becoming dimmer with
higher excitation wavelength. The five synthetic hyperspectral images are arranged as per Section 3.3, i.e.
into a tensor of size 31 × 250000 × 5.

The results of NMF and NNCP are shown in Figure 9. The NNCP recovered emission and excitation
spectra are in strong correspondence with ground truth, with abundance images showing clear spatial sepa-
ration. We vary the rank of the NNCP decomposition of synthetic images and achieve CORCONDIA values
of 100, 99.9763, 99.5701, and −1.4732 for rank 1 to 4. From these values, rank-3 is appropriate, which is
consistent with ground truth and thus supports the usage of CORCONDIA to decide on a real-world rank.
The NMF results were obtained using an alternating minimization strategy (Kim & Park, 2008) and are
sub-optimal compared to NNCP in both emission spectral recovery and the separability and noise-robustness
of the abundance images. Additionally, by definition, NMF does not return excitation spectra for the three
substances. The results from the original multiplicative algorithm for NMF (Lee & Seung, 1999) are highly
noisy.

5. Discussion

5.1. Improvements over Previous Work
Tensor decompositions are unique under mild conditions, therefore the NNCP approach guarantees sta-

ble recovery of fluorophore signatures in a joint decomposition. In contrast, previous related work uses
NMF-style approaches extensively which are in general non-unique. This leads to NMF approaches hav-
ing several feasible solutions, which may make them unreliable for performing group hypothesis testing.
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Figure 9: Abundance images, emission and excitation spectra recovered using NMF and NNCP. NMF returned emission spectra
suffer from poor reproducibility and are not able to adequately recover the ground truth. NNCP achieves a closer approximation
to the ground truth and also returns the excitation spectra.

Within the framework described, we notice subtle shifts in emission spectra across groups, which may be
relevant to AMD biochemistry. Without a tensor approach, previous work mentioned in Section 1.1 utilized
multi-excitation wavelength image stacks by concatenating the image stacks. Alternatively, they could also
perform independent NMF analysis for each image stack. However, both of these approaches do not take
the relationships between the image stacks into account when retrieving spectral factors and can lead to
overfitting.

Further, the tensor representation gives us the excitation spectra of these fluorophores as well, which is
not possible with matrix based approaches. This excitation information can be used clinically to determine
an appropriate wavelength of light used for illuminating the retina in clinical imaging. Finally, to our
knowledge, this is the first work to perform functional group statistical testing on hyperspectral images.
This novel perspective allows the testing of clinically relevant hypotheses, such as whether autofluorescence
properties change with disease.

5.2. Limitations and Future Work
The excitation wavelengths used to generate the dataset are unequally spaced on the wavelength axis,

however, we implicitly assume equal separation. We could use tensor completion (Liu et al., 2013a; Zhang
et al., 2014) from the sparse samples available and re-sample evenly. However, tensor completion requires
the data to be missing randomly which is not the case here and cannot be reliably applied. In this study, we
assume that there are no non-linearities and the data are well described by a multi-linear model. Non-linear
models have been extensively explored in geospatial spectral unmixing (Heylen et al., 2014). However, the
underlying physics of reflectance imaging in remote sensing is different from that of fluorescence microscopy
and many assumptions do not translate. Ikoma et al. (2014) create NMF and NNCP model that handles
attentuation-based nonlinearities in hyperspectral images. However, their method requires known reference
spectra which are currently unavailable in our application. Future investigations should incorporate the
physics of fluorescence microscopy into a blind non-multilinear NNCP model or be purely data-driven.

Future work will also explore incorporating domain knowledge into the decomposition. For example, semi-
supervised NMF methods can incorporate domain knowledge into the matrix factorization by leveraging a
small set of labeled observations (Lee et al., 2009). For this dataset, we find two components to be appropriate
based on a data-driven analysis. However, a semi-supervised NNCP approach may allow the user to define
rank in the case where strong domain knowledge is available and guide the decomposition.

Controlling for environmental variation in the image acquisition is of importance as a change in environ-
ment affects the NNCP spectral unmixing. Additionally, some natural fluorophores have emission spectra
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that vary with excitation wavelength not just in magnitude, but also in shape (Lakowicz, 2006a). The
proposed unmixing and statistical framework needs to be applied to a larger sample size. This would allow
the quantification of spectral changes and intensity changes, and would allow us to build statistical models
based on other possible covariates such as stage of disease, gender and age. Ultimately, autofluorescence
spectral signatures should be utilized concurrently with other methodologies such as imaging mass spectrom-
etry (Norris & Caprioli, 2013; Crouch et al., 2015), resonance Raman tissue imaging (Bhosale et al., 2009),
and fluorescence lifetime microscopy (Suhling et al., 2015) to form a consensus result for precise molecular
identification.

5.3. Conclusion
In this paper, we present a novel framework for the analysis of high-dimensional hyperspectral imaging

of tissue autofluorescence including the arrangement of images into a low rank tensor, determining the
number of autofluorescent substances and recovering their autofluorescence spectra and spatial distribution
in the presence of missing data and to our knowledge, the first application of functional hypothesis tests to
hyperspectral images. This includes the novel recovery of excitation spectra from hyperspectral fluorescence
microscopy images. From a clinical perspective, AMD is notoriously difficult to detect early and treat in
time. The extraction of fluorescence spectra that are most associated with its progression can lead to future
study of the biochemistry of the disease possibly leading to the development of new drugs and therapies.
Better understanding of autofluorescence sources will also improve the interpretation of clinical fundus
autofluorescence imaging, which is commonly used in the diagnosis and management of AMD.

We simultaneously estimate spectral and spatial characteristics of autofluorescent tissue within the eye.
Further, we present a statistical framework for group testing between AMD and control donors which
accounts for the functional nature of spectra. However, the methodology developed here is general and can
be applied to the spectral imaging of any pathology. Previous studies have used methods like NMF for source
separation extensively. For example, NMF has been used to recover spectral and spatial characteristics of
structures of interest in microscopy images of aorta tissue (Galeano et al., 2015), breast cancer cells (Pu et al.,
2011), and the colon (Roxbury et al., 2015). Additionally, in contrast to our current goals, autofluorescence
is a large source of noise for fluorescent dye-based microscopy and its removal is highly desired. NMF-based
procedures have been proposed for the detection and subsequent removal of cellular autofluorescence to
enhance fluorescence imaging (Woolfe et al., 2011). Members of the medical image analysis community
relying on linear non-negative methods for spectral analysis may benefit by taking the high-dimensional
multi-linear non-negative tensor decomposition approach proposed in this study.
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Appendix A. List of Abbreviations

AMD Age-related Macular Degeneration
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AF Autofluorescence
BrM Bruch’s Membrane
CP CPD/PARAFAC

CPD Canonical Polyadic Decomposition
CORCONDIA Core Consistency Diagnostic

LF/ML Lipofuscin/Melanolipofuscin
PARAFAC Parallel Factor Analysis

NMF Non-negative Matrix Factorization
NNCP Non-negative CP

RPE Retinal Pigment Epithelium
AO Alternating Optimization

ADMM Alternating Direction Method of Multipliers
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